Vol. 44
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-12-17
Analysis of Microwave Absorbing Properties of Epoxy MWCNT Composites
By
Progress In Electromagnetics Research Letters, Vol. 44, 63-69, 2014
Abstract
In the ongoing search for new materials for microwave absorption applications, Carbon Nanotubes deserve a special consideration due to their outstanding properties. In this paper, microwave absorbing properties of epoxy resin based composites containing commercial MultiWalled Carbon Nanotubes used as fillers have been analyzed. The complex permittivity of the composites was measured in a wide frequency band (3-18 GHz). The absorbing properties of a single-layer absorber backed by a metallic plate considering several concentration of CNTs was simulated taking into account the measured permittivity.
Citation
Patrizia Savi, Mario Miscuglio, Mauro Giorcelli, and Alberto Tagliaferro, "Analysis of Microwave Absorbing Properties of Epoxy MWCNT Composites," Progress In Electromagnetics Research Letters, Vol. 44, 63-69, 2014.
doi:10.2528/PIERL13102803
References

1. Neo, C. P. and K. Vardan, "Optimization of carbon fiber composites," IEEE Trans. on Electromagnetic Compatibility, Vol. 46, No. 1, 102-106, 2004.
doi:10.1109/TEMC.2004.823618

2. Said, A., L. Bednarz, R. Daussin, C. Bailly, and X. Lu, "Carbon nanotube composites for broadband microwave absorbing materials," IEEE Trans. Microwave Theory and Techn., Vol. 54, No. 6, 2745-2754, 2006.
doi:10.1109/TMTT.2006.874889

3. De Rosa, I. M., F. Sarasini, M. S. Sarto, and A. Tamburrano, "EMC impact of advanced carbon ¯ber/carbon nanotube reinforce composites for next-generation aerospace applications," IEEE Trans. on Electromagnetic Compatibility, Vol. 50, No. 3, 556-563, 2008.
doi:10.1109/TEMC.2008.926818

4. Koledintseva, M. Y., J. Drewniak, and R. Dubroff, "Modeling of shielding composite materials and structure for microwave frequency," Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009.
doi:10.2528/PIERB09050410

5. Kumar Das, C. and C. V. Sudhakar, "CNT based and graphene based polymer nanocomposites for radar absorbing applications," Journal of Materials Science and Engineering B2, Vol. 6, 368-375, 2012.

6. Singh, V. K., A. Shukla, M. K. Patra, L. Saini, R. K. Jani, S. R. Vadera, and N. Kumar, "Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite," Carbon, Vol. 50, 2202-2208, 2012.
doi:10.1016/j.carbon.2012.01.033

7. Bhagwan, F. J., M. Sawant, M. Kulkarni, and P. K. Brahmankar, "Dispersion and performance properties of carbon nanotubes (CNTs) based polymer composites: A review," Journal of Encapsulation and Adsorption Sciences , Vol. 2, 69-78, 2012.

8. Micheli, D., C. Apollo, R. Pastore, and M. Marchetti, "X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS desing simulation," Composites Science and Technology, Vol. 70, 400-409, 2010.
doi:10.1016/j.compscitech.2009.11.015

9. Dombovari, A., N. Halonen, A. Sapi, et al. "Moderate anisotropy in the electrical conductivity of bulk MWCNT/epoxy composites," Carbon, Vol. 48, 1918-1925, 2010.
doi:10.1016/j.carbon.2010.01.057

10. Micheli, D., R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, "Broadband electromagnetic absorbers using carbon nanostructure-based composites," IEEE Trans. Microwave Theory and Techn., Vol. 59, No. 10, 2633-2646, 2011.
doi:10.1109/TMTT.2011.2160198

11. Chang, J., G. Liang, S. Cai, and Y. Li, "The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing," Carbon, Vol. 50, 689-698, 2012.
doi:10.1016/j.carbon.2011.09.029

12. Micheli, D., C. Apollo, R. Pastore, D. Barbera, R. B. Morles, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, "Optimization of multilayer shields made of composite nanostructured materials ," IEEE Trans. on Electromagnetic Compatibility, Vol. 54, No. 1, 60-68, 2012.
doi:10.1109/TEMC.2011.2171688

13. Micheli, D., R. Pastore, G. Gradoni, V. M. Primiani, F. Moglie, and M. Marchetti, "Reduction of satellite electromagnetic scattering by carbon nanostructures multilayers," Acta Astronautica, Vol. 88, 61-73, 2013.
doi:10.1016/j.actaastro.2013.03.003

14. Savi, P., D. Trinchero, R. Tascone, and R. Orta, "A new approach to the design of dual-mode rectangular waveguide filters with distributed coupling," IEEE Trans. on Microwave Theory and Techniques, Vol. 45, No. 2, 221-228, 1997.
doi:10.1109/22.557603

15. Dresselhaus, M. S., G. Dresselhaus, R. Saitoc, and A. Joriod, "Raman spectroscopy of carbon nanotubes," Physics Reports, Vol. 409, 47-99, 2005.
doi:10.1016/j.physrep.2004.10.006

16. Chiolero, A., M. Castellino, P. Jagdale, M. Giorcelli, S. Bianco, and A. Tagliaferro, "Electrical properties of CNT-based polymeric matrix nanocomposites," Carbon Nanotubes --- Polymer Nanocomposites, Yellampalli Siva INTECH Open Access Publisher, 215-230, 2011.

17. Kumar, A., S. Sharma, and G. Singh, "Measurement of dielectric constant and loss factor of the dielectric material at microwave frequency," Progress In Electromagnetics Research B, Vol. 69, 47-54, 2007.

18. Giorcelli, M., P. Savi, A. Delogu, M. Miscuglio, M. H. Yahya, and A. Tagliaferro, "Microwave absorption properties in epoxy resin multi walled carbon nanotubes composites," International Conference on Electromagnetic in Advanced Applications (ICEAA13), Sept. 2013.