1. Harrism, S. E., "Electromagnetically induced transparency," Phys. Today, Vol. 50, 36-42, 1997.
doi:10.1063/1.881806 Google Scholar
2. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys., Vol. 77, 633-673, 2005.
doi:10.1103/RevModPhys.77.633 Google Scholar
3. Hau, L. V., S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature, Vol. 397, 594-598, 1999.
doi:10.1038/17561 Google Scholar
4. Phillips, D. F., A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett., Vol. 86, 783-786, 2001.
doi:10.1103/PhysRevLett.86.783 Google Scholar
5. Xu, Q., S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett., Vol. 96, 123901, 2006.
doi:10.1103/PhysRevLett.96.123901 Google Scholar
6. Totsuka, K., N. Kobayashi, and M. Tomita, "Slow light in coupled-resonator-induced transparency," Phys. Rev. Lett., Vol. 98, 213904, 2007.
doi:10.1103/PhysRevLett.98.213904 Google Scholar
7. Kekatpure, R. D., E. S. Barnard, W. Cai, and M. L. Brongersma, "Phase-coupled plasmon-induced transparency," Phys. Rev. Lett., Vol. 104, 243902, 2010.
doi:10.1103/PhysRevLett.104.243902 Google Scholar
8. Zhang, J., W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, "Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems," Appl. Phys. Lett., Vol. 99, 181120, 2011.
doi:10.1063/1.3659309 Google Scholar
9. Yang, X., M. Yu, D. L. Kwong, and C. W.Wong, "All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities," Phys. Rev. Lett., Vol. 102, 173902, 2009.
doi:10.1103/PhysRevLett.102.173902 Google Scholar
10. Gu, T., S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, "Deterministic integrated tuning of multicavity resonances and phase for slow-light in coupled photonic crystal cavities," Appl. Phys. Lett., Vol. 98, 121103, 2011.
doi:10.1063/1.3571283 Google Scholar
11. Zheludev, N. I. and Y. S. Kivshar, "From metamaterials to metadevices," Nature Mater., Vol. 11, 917-924, 2012.
doi:10.1038/nmat3431 Google Scholar
12. Lazarides, N. and G. P. Tsironis, "Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials," Phys. Rev. Lett., Vol. 110, 053901, 2013.
doi:10.1103/PhysRevLett.110.053901 Google Scholar
13. Fan, Y. C., L. Li, S. X. Yu, C. Zhu, and C. H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
doi:10.2528/PIER13061711 Google Scholar
14. Zhang, S., D. A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-induced transparency in metamaterials," Phys. Rev. Lett., Vol. 101, 047401, 2008.
doi:10.1103/PhysRevLett.101.047401 Google Scholar
15. Liu, N., L. Langguth, T. Weiss, J. KÄastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nature Mater., Vol. 8, 758-762, 2009.
doi:10.1038/nmat2495 Google Scholar
16. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, 1103-1107, 2010.
doi:10.1021/nl902621d Google Scholar
17. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial analog of electromagnetically induced transparency," Phys. Rev. Lett., Vol. 101, 253903, 2008.
doi:10.1103/PhysRevLett.101.253903 Google Scholar
18. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency," Appl. Phys. Lett., Vol. 94, 211902, 2009.
doi:10.1063/1.3138868 Google Scholar
19. Singh, R., C. Rockstuhl, F. Lederer, and W. Zhang, "Coupling between a dark and a bright eigenmode in a terahertz metamaterial," Phys. Rev. B, Vol. 79, 085111, 2009.
doi:10.1103/PhysRevB.79.085111 Google Scholar
20. Chiam, S. Y., R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, "Analogue of electromagnetically induced transparency in a terahertz metamaterial," Phys. Rev. B, Vol. 80, 153103, 2009.
doi:10.1103/PhysRevB.80.153103 Google Scholar
21. Zhang, L., P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, "Large group delay in a microwave metamaterial analog of electromagnetically induced transparency," Appl. Phys. Lett., Vol. 97, 241904, 2010.
doi:10.1063/1.3525925 Google Scholar
22. Sun, Y., H. T. Jiang, Y. P. Yang, Y. W. Zhang, H. Chen, and S. Y. Zhu, "Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution," Phys. Rev. B, Vol. 83, 195140, 2011.
doi:10.1103/PhysRevB.83.195140 Google Scholar
23. Yin, X. G., T. H. Feng, S. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, "Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules," Appl. Phys. Lett., Vol. 103, 021115, 2013.
doi:10.1063/1.4813553 Google Scholar
24. Liu, X. J., J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, "Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode," Appl. Phys. Lett., Vol. 100, 131101, 2012.
doi:10.1063/1.3696306 Google Scholar
25. Shao, J., J. Q. Li, J. Li, Y. K. Wang, Z. G. Dong, P. Chen, R. X. Wu, and Y. Zhai, "Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial," Appl. Phys. Lett., Vol. 102, 034106, 2013.
doi:10.1063/1.4789432 Google Scholar
26. Wu, J. B., B. B. Jin, J. Wan, L. J. Liang, Y. G. Zhang, T. Jia, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, "Superconducting terahertz metamaterials mimicking electromagnetically induced transparency," Appl. Phys. Lett., Vol. 99, 161113, 2011.
doi:10.1063/1.3653242 Google Scholar
27. Kurter, C., P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, "Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial," Phys. Rev. Lett., Vol. 107, 043901, 2011.
doi:10.1103/PhysRevLett.107.043901 Google Scholar
28. Tamayama, Y., T. Nakanishi, and M. Kitano, "Variable group delay in a metamaterial with field-gradient-induced transparency," Phys. Rev. B, Vol. 85, 073102, 2012.
doi:10.1103/PhysRevB.85.073102 Google Scholar
29. Lu, , X., J. H. Shi, R. Liu, and C. Y. Guan, "Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials," Opt. Express, Vol. 20, 17581-17590, 2012.
doi:10.1364/OE.20.017581 Google Scholar
30. Aydin, K., I. Bulu1, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for di®erent split-ring resonator parameters and designs," New J. Phys., Vol. 7, 168, 2005.
doi:10.1088/1367-2630/7/1/168 Google Scholar