Vol. 47
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-07-30
Ferrite-Loaded Half Mode Substrate Integrated Waveguide Phase Shifter
By
Progress In Electromagnetics Research Letters, Vol. 47, 85-90, 2014
Abstract
An X-band ferrite-loaded half mode substrate integrated waveguide (HMSIW) phase shifter is proposed and fabricated in this paper. A full-height E-plane Yttrium Iron Garnet (YIG) ferrite slab is embedded in the HMSIW to construct the non-reciprocal phase shifter. With the application of a magnetic bias field on the ferrite slab, the phase of the ferrite-loaded HMSIW can be adjusted and controlled. For a magnetic bias field of 1800 Gauss, the insertion loss is less than 3.2 dB from 9.7 to 11.0 GHz. The return loss is better than 10 dB over the same frequency range. The largest differential phase shift can be up to 337°. This circuit is easily integrated with other planar components and also has the capability to handle medium power level.
Citation
Yu Jian Cheng, Qiudong Huang, Yedi Zhou, and Chengxiang Weng, "Ferrite-Loaded Half Mode Substrate Integrated Waveguide Phase Shifter," Progress In Electromagnetics Research Letters, Vol. 47, 85-90, 2014.
doi:10.2528/PIERL14052401
References

1. Uchimura, H., T. Takenoshita, and M. Fujii, "Development of `a laminated waveguide'," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 12, 2438-2443, 1998.
doi:10.1109/22.739232

2. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 2, 68-70, 2001.
doi:10.1109/7260.914305

3. Cheng, Y. J., W. Hong, K. Wu, and Y. Fan, "Millimeter-wave substrate integrated waveguide long slot leaky-wave antennas and two-dimensional multibeam applications," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 40-47, 2011.
doi:10.1109/TAP.2010.2090471

4. Cheng, Y. J., P. Chen, W. Hong, T. Djerafi, and K. Wu, "Substrate integrated waveguide beamforming networks and multibeam antenna arrays for low-cost satellite and mobile systems," IEEE Antennas Propag. Mag., Vol. 53, No. 6, 18-30, 2011.
doi:10.1109/MAP.2011.6157710

5. Liu, B., W. Hong, Y. Q. Wang, Q. H. Lai, and K. Wu, "Half mode substrate integrated waveguide (HMSIW) 3 dB coupler," IEEE Microw. Wireless Compon. Lett., Vol. 17, 22-24, 2007.
doi:10.1109/LMWC.2006.887244

6. Cheng, Y. J., W. Hong, and K. Wu, "Millimeter-wave half mode substrate integrated waveguide frequency scanning antenna with quadri-polarization," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1848-1855, 2010.
doi:10.1109/TAP.2010.2046844

7. Cheng, Y. J. and C. A. Zhang, "Miniaturized half mode substrate integrated waveguide cavity resonator and filter with good spurious suppression," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 3, 396-404, 2013.
doi:10.1080/09205071.2013.747124

8. He, F. F., K. Wu, W. Hong, L. Han, and X. Chen, "A low phase-noise VCO using an electronically tunable substrate integrated waveguide resonator," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, 3452-3458, 2010.

9. Wu, L. S., X. L. Zhou, and W. Y. Yin, "A new type of periodically loaded half-mode substrate integrated waveguide and its applications," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 4, 882-893, 2010.
doi:10.1109/TMTT.2010.2042832

10. Sekar, V., M. Armendariz, and K. Entesari, "A 1.2-1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 855-876, 2011.
doi:10.1109/TMTT.2011.2109006

11. Ding, Y. and K. Wu, "Varactor-tuned substrate integrated waveguide phase shifter," International Microwave Symposium, 1-4, Baltimore, US, Jul. 2011.

12. Cheng, Y. J., "Substrate integrated waveguide frequency-agile slot antenna and its multibeam application," Progress In Electromagnetics Research, Vol. 130, 153-168, 2012.
doi:10.2528/PIER12061602

13. Xiang, Q. Y., Q. Y. Feng, X. G. Huang, and D. H. Jia, "Substrate integrated waveguide filters and mechanical/electrical recon¯gurable half-mode substrate integrated waveguide filters," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 13, 1756-1766, 2012.
doi:10.1080/09205071.2012.711526

14. Khalichi, B., S. Nikmehr, and A. Pourziad, "Reconfigurable SIW antenna based on RF-MEMS switches," Progress In Electromagnetics Research, Vol. 142, 189-205, 2013.
doi:10.2528/PIER13070204

15. Sellal, K., L. Talbi, and M. Nedil, "Design and implementation of a controllable phase shifter using substrate integrated waveguide," IET Microw. Antennas Propag., Vol. 6, No. 9, 1090-1094, 2012.
doi:10.1049/iet-map.2011.0380

16. Adhikari, S., Y. J. Ban, and K. Wu, "Magnetically tunable ferrite loaded substrate integrated waveguide cavity resonator," IEEE Microw. Wireless Compon. Lett.,, Vol. 21, 139-141, 2011.
doi:10.1109/LMWC.2010.2102746

17. Ghiotto, A., S. Adhikari, and K.Wu, "Ferrite-loaded substrate integrated waveguide switch," IEEE Microw. Wireless Compon. Lett., Vol. 22, 120-122, 2012.
doi:10.1109/LMWC.2012.2183859

18. Adhikari, S., A. Ghiotto, and K. Wu, "Simultaneous electric and magnetic two-dimensionally tuned parameter-agile SIW devices," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 423-435, 2013.
doi:10.1109/TMTT.2012.2226058

19. Tan, L. R., R. X.Wu, C. Y.Wang, and Y. Poo, "Magnetically tunable ferrite loaded SIW antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 273-275, 2013.
doi:10.1109/LAWP.2013.2248113

20. Fesharaki, F., C. Akyel, and K. Wu, "Broadband substrate integrated waveguide edge-guided mode isolator," Electronics Lett., Vol. 49, No. 4, 269-271, 2013.
doi:10.1049/el.2012.2700

21. Pozar, D. M., Microwave Engineering, 4th edition, Wiley, New York, 2011.