Vol. 47
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-07-25
Multiband Antenna Based on Loading a CPW-Fed Monopole with One CRLH-TL Unit Cell
By
Progress In Electromagnetics Research Letters, Vol. 47, 47-53, 2014
Abstract
A Coplanar Waveguide(CPW)-fed monopole loaded with Composite Right/Left Handed Transmission Line (CRLH-TL) unit cell is presented in this letter. Multiband is achieved due to the nonlinear dispersion relation of the CRLH-TL unit cell. The CRLH-TL unit cell supports a fundamental LH wave (phase advance) at lower frequencies and a RH wave (phase delay) at higher frequencies. By loading CRLH-TL unit cells with a conventional monopole, the resonant frequency of higher order mode can be decreased and zeroth-order mode or even negative-order mode can be achieved. As a result, the proposed antenna operates at 1.43 GHz, 2.58 GHz, 3.31 GHz and 4.4 GHz. Finally the modified antenna is fabricated and measured; measurements and EM simulations are in a good agreement that confirms the proposed theory.
Citation
Hai-Peng Li, Guang-Ming Wang, Xiang-Jun Gao, and Xiao-Fei Zhang, "Multiband Antenna Based on Loading a CPW-Fed Monopole with One CRLH-TL Unit Cell," Progress In Electromagnetics Research Letters, Vol. 47, 47-53, 2014.
doi:10.2528/PIERL14053009
References

1. Caloz, C. and T. Itoh, "Novel microwave devices and structures based on the transmission line approach of meta-material," IEEE MTT Int'l Symp., Vol. 1, 195-198, Philadelphia, PA, Jun. 2003.

2. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1031-1038, Apr. 2010.
doi:10.1109/TAP.2010.2041317

3. Niu, B.-J. and Q.-Y. Feng, "Bandwidth enhancement of CPW-fed antenna based on epsilon negative zeroth-order and first-order resonators," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1125-1128, 2013.
doi:10.1109/LAWP.2013.2280952

4. Jin, P. and R. W. Ziolkowski, "Broadband, efficient, electrically small metamaterial-inspired antennas facilitated by active near-field resonant parasitic elements," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 318-327, Feb. 2010.
doi:10.1109/TAP.2009.2037708

5. AIbrahim, A., A. M. E. Safwat, and H. ElHennawy, "Triple-band microstrip-fed monopole antenna loaded with CRLH unit cell," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1574-1550, 2011.

6. Taher, H., "High-performance low-pass filter using complementary square split ring resonators defected ground structure," ET Microw. Antennas Propag., Vol. 5, No. 7, 771-775, 2011.
doi:10.1049/iet-map.2010.0273

7. Iizuk, H. and P. S. Hall, "Left-handed dipole antennas and their implementations," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1246-1253, May 2007.
doi:10.1109/TAP.2007.895568

8. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, New York, NY, USA, 2006.

9. Belenguer, A., A. L. Borja, and V. E. Boria, "Balanced dual composited right/left-handed microstrip line with modified complementary split-ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 12, 880-883, 2013.
doi:10.1109/LAWP.2013.2271983