Vol. 47
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-08-05
Design of Compact Asymmetric Coplanar Strip-Fed UWB Antenna with Dual Band-Notched Characteristics
By
Progress In Electromagnetics Research Letters, Vol. 47, 103-109, 2014
Abstract
In this paper, a new design of asymmetric coplanar strip (ACS)-fed UWB planar monopole antenna with dual band-notched characteristics is presented and investigated. The proposed antenna is composed of an asymmetric ground plane, a semi-circular radiator, together with two open-ended half wavelength bow-shaped slots etched on the radiation patch. This leads to the desired dual notched bands of 3.12-3.69 GHz for WiMAX and 5.51-6.01 GHz for WLAN. Experimental results show that the designed antenna, with compact size of 29.5×12 mm2, has stable and omnidirectional radiation pattern, sharp reduction in gain and group delay at notched frequencies. The very simple feeding structure and compact uniplanar design make it easy to be integrated within the portable device for UWB communication systems.
Citation
Long Chen, Yuan-Fu Liu, and Pu-Chao Wu, "Design of Compact Asymmetric Coplanar Strip-Fed UWB Antenna with Dual Band-Notched Characteristics," Progress In Electromagnetics Research Letters, Vol. 47, 103-109, 2014.
doi:10.2528/PIERL14062204
References

1. Federal Communications Commission "Federal communications commission revision of Part 15 of the commission's rules regarding ultra-wideband transmission system from 3.1 to 10.6 GHz,", FCC, Washington, DC, ET-Docket, 98-153, 2002.
doi:10.1109/TAP.2012.2196954

2. Lu, J.-H. and C. H. Yeh, "Planar broadband arc-shaped monopole antenna for UWB system," IEEE Trans. Antennas Propagat., Vol. 60, No. 7, 3091-3095, 2012.
doi:10.1109/TAP.2010.2078469

3. Barbarino, S. and F. Consoli, "Study on super-wideband planar asymmetrical dipole antennas of circular shape," IEEE Trans. Antennas Propagat., Vol. 58, No. 12, 4074-4078, 2010.

4. Zhou, D., S. C. S. Gao, F. Zhu, R. A. Abd-Alhameed, and J. D. Xu, "A simple and compact planar ultra wideband antenna with single or dual band-notched characteristics," Progress In Electromagnetics Research, Vol. 123, 47-65, 2012.
doi:10.2528/PIER09080308

5. Gao, G.-P., M. Li, S.-F. Niu, X.-J. Li, B.-N. Li, and J.-S. Zhang, "Study of a novel wideband circular slot antenna having frequency band-notched function," Progress In Electromagnetics Research, Vol. 96, 141-154, 2009.
doi:10.1049/el.2010.2574

6. Cai, L.-Y., G. Zeng, and H. C. Yang, "Compact wideband antenna with double-fed structure having band-notched characteristics," Electron. Lett., Vol. 46, No. 23, 1534-1536, 2010.
doi:10.1109/TAP.2008.928815

7. Zhang, Y., W. Y. Hong, Z. Q. Kuai, Y. D. Don, and J. Y. Zhou, "Planar ultra-wideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line," IEEE Trans. Antennas Propagat., Vol. 56, No. 9, 3063-3068, 2008.
doi:10.1016/j.aeue.2010.01.013

8. Soltani, S., M. Azarmanesh, P. Lotfi, and G. Dadashzadeh, "Two novel very small monopole antennas having frequency band notch function using DGS for UWB application," Int. J. Electron. Commun. (AU), Vol. 65, 87-94, 2011.
doi:10.2528/PIER10040507

9. Barbarino, S. and F. Consoli, "UWB circular slot antenna provided with an inverted-L notch filter for the 5 GHz WLAN band," Progress In Electromagnetics Research, Vol. 104, 1-13, 2010.

10. Moghadasi, M.-N., R. A. Sadeghzadeh, T. Sedghi, T. Aribi, and B. S. Virdee, "UWB CPW-fed fractal patch antenna with band-notched function employing folded T-shaped element," IEEE Antennas Wireless Propag. Lett., Vol. 12, 507-507, 2013.

11. Danesfahani, R., L. Asadpor, and S. Soltani, "A small UWB CPW-fed monopole antenna with variable notched bandwidth," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1067-1076, 2009.
doi:10.1002/mop.25269

12. Soltani, S., M. N. Azarmanesh, and P. Lotfi, "Design of small ACS-fed band-notch UWB monopole antenna using particle swarm optimization," Microwave Opt. Technol. Lett., Vol. 52, No. 7, 1510-1513, 2010.