1. Kim, H. S., H. S. Uhm, and S. W. Baek, "Thermal and structural analysis on output coupler of helix-TWT," Proceedings of 30th IEEE International Conference on Plasma Science (ICOPS), 174, Jun. 2003. Google Scholar
2. Sinha, A. K., V. V. P. Singh, V. Srivastava, and S. N. Joshi, "On the design of coaxial coupler having multi-section short transformer for compact sized power helix travelling wave tubes," IEEE Vacuum Electronics Conference, Monterey, CA, USA, 2000. Google Scholar
3. Baik, C.-W., B. Jia, S.-S. Jung, and G.-S. Park, "Matching of the helix with coaxial coupler," 2000 25th International Conference on Infrared and Millimeter Waves, Conference Digest, 337-338, Beijing, China, 2000. Google Scholar
4. Alaria, M. K., A. K. Sinha, and V. Srivastava, "Thermal analysis of coaxial coupler for a space helix TWT," India Journal of Radio & Space Physics, Vol. 38, 227-232, Aug. 2009. Google Scholar
5. Ghosh, T. K., R. G. Carter, A. J. Challis, K. G. Rushbrook, and D. Bowler, "Optimization of coaxial couplers," IEEE Transactions on Electron Devices, Vol. 54, No. 7, 1753-1759, 2007.
doi:10.1109/TED.2007.898045 Google Scholar
6. Ghosh, S., P. K. Jain, and B. N. Basu, "Rigorous tape analysis of inhomogeneously loaded slow-wave structures," IEEE Trans. on Electron Devices, Vol. 44, No. 7, 1158-1168, 1997.
doi:10.1109/16.595945 Google Scholar
7. Gilmour, A. S., Principles of Traveling Wave Tubes, Artech House, 1994.
8. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., McGrew-Hill, Inc., 1992.
9. Kim, H. J., Y. H. Na, J. J. Choi, and J. H. So, "Experimental investigation of a helical travelingwave tube designed by accurate numerical modeling," Journal of the Korean Physical Society, Vol. 50, No. 1, 72-77, 2007.
doi:10.3938/jkps.50.72 Google Scholar
10. CST Studio Suite 2010 Operating Manual, Licensed 2010, Darmstadt, Germany, 2010. Google Scholar
11. ANSYS Help Guide, Version 10.1, ANSYS Inc.. Google Scholar