Vol. 51
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-02-14
Homogenization of Periodic Objects Embedded in Layered Media
By
Progress In Electromagnetics Research Letters, Vol. 51, 95-99, 2015
Abstract
An effective medium modeling technique is proposed to homogenize the periodic objects embedded in layered media. The homogenization is based on the same scattering coefficients. An integral equation based approach is adopted to solve the scattering problem of original structures. Our modeling results are compared with Maxwell-Garnett mixing formula and published results. Good agreements have been observed. Periodic metal patches embedding in layered dielectric structure is fabricated and measured to validate the modeling technique. The difference between experiment results and proposed modeling results is less than 3%.
Citation
Teng Zhao, Ji-Ming Song, Telesphor Kamgaing, and Yidnekachew S. Mekonnen, "Homogenization of Periodic Objects Embedded in Layered Media," Progress In Electromagnetics Research Letters, Vol. 51, 95-99, 2015.
doi:10.2528/PIERL14121507
References

1. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed materials," Phy. Rev. Lett., Vol. 85, No. 14, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933

2. Njoku, C. C., W. G. Whittow, and J. C. Vardaxoglow, "Simulation methodology for synthesis of antenna substrates with microscale inclusions," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2194-2202, 2012.
doi:10.1109/TAP.2012.2189736

3. Merrill, W. M., R. E. Diaz, M. M. Lore, M. C. Squires, and N. G. Alexopoulos, "Effective medium theory for artificial materials composed of multiple sizes of spherical inclusions in a host continuum," IEEE Trans. Antennas Propag., Vol. 47, No. 1, 142-148, 1999.
doi:10.1109/8.753004

4. Zheng, G., B.-Z. Wang, H. Li, X.-F. Liu, and S. Ding, "Analysis of finite periodic dielectric gratings by the finite-difference frequency-domain method with the sub-entire-domain basis functions and wavelets," Progress In Electromagnetics Research, Vol. 99, 453-463, 2009.
doi:10.2528/PIER09111502

5. Lerisirimit, C. and D. Torrungrueng, "Fast capacitance extraction for finite planar periodic structures using the generalized forward-backward and novel spectral acceleration method," Progress In Electromagnetics Research, Vol. 96, 251-266, 2009.
doi:10.2528/PIER09081004

6. Hu, F. and J. Song, "Integral equation analysis of scattering from multilayered periodic array using equivalence principle and connection scheme," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 848-856, 2010.
doi:10.1109/TAP.2009.2039313

7. Zhao, T., J. Song, and T. Kamgaing, "Modeling and experimental test of effective dielectric constant of multilayer substrate with periodic metal inclusion," IEEE MTT-S International Microwave Symposium, 1-3, Jun. 2013.

8. Smith, D. R., S. Schultz, P. Marko, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phy. Rev. B, Vol. 65, 016608, 2004.

9. Zhao, T., J. Song, T. Kamgaing, and Y. S. Mekonnen, "An efficient modeling approach for multilayered dielectric embedded with periodic metal," Microwave and Optical Technology Letters, Vol. 56, No. 6, 1387-1391, 2014.
doi:10.1002/mop.28344

10. Wu, F. and K. W. Whites, "Quasi-static effective permittivity of periodic composites containing complex shaped dielectric particles," IEEE Trans. Antennas Propag., Vol. 49, No. 8, 1174-1181, 2001.
doi:10.1109/8.943312

11. Das, N. K., S. M. Voda, and D. M. Pozar, "Two methods for the measurement of substrate dielectric constant," IEEE Trans. Microwave Theory and Tech., Vol. 35, No. 7, 636-642, 1987.
doi:10.1109/TMTT.1987.1133722

12. Mondal, J. P. and T.-H. Chen, "Propagation constant determination in microwave fixture de-embedding procedure," IEEE Trans. Microwave Theory and Tech., Vol. 36, No. 4, 706-714, 1988.
doi:10.1109/22.3575

13. Balanis, C. A., Advanced Engineering Electromagnetic, J. Wiley & Sons, 1989.