Vol. 57
Latest Volume
All Volumes
PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-11-02
Localized Pseudo-Skeleton Approximation Method for Electromagnetic Analysis on Electrically Large Objects
By
Progress In Electromagnetics Research Letters, Vol. 57, 103-109, 2015
Abstract
In this paper, the localized pseudo-skeleton approximation (LPSA) method for electromagnetic analysis on electrically large structures is presented. The proposed method seeks the low rank representations of far-field coupling matrices by using pseudo-skeleton approximations (PSA). By using PSA, only part of the original matrix is needed to be calculated and stored which is very similar to the adaptive cross approximation (ACA). Moreover, rank approximation and index finding schemes are given to improve the performance of the method in this paper. Several numerical results are given to demonstrate that the proposed method performs better than the randomized pseudo-skeleton approximation (RPSA) and ACA.
Citation
Yong Zhang, and Hai Lin, "Localized Pseudo-Skeleton Approximation Method for Electromagnetic Analysis on Electrically Large Objects," Progress In Electromagnetics Research Letters, Vol. 57, 103-109, 2015.
doi:10.2528/PIERL15070601
References

1. Harrington, R., Field Computation by Moment Methods, Macmillan, New York, 1968.

2. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microwave Opt. Technol. Lett., Vol. 10, No. 1, 14-19, Sep. 1995.
doi:10.1002/mop.4650100107

3. Bebendorf, M., "Approximation of boundary element matrices," Numer. Math., Vol. 86, No. 4, 565-589, 2000.
doi:10.1007/PL00005410

4. Brick, Y., V. Lomakin, and A. Boag, "Fast direct solver for essentially convex scatterers using multilevel non-uniform grids," IEEE Trans. Antennas Propag., Vol. 62, 4314-4324, 2014.
doi:10.1109/TAP.2014.2327651

5. Wei, J.-G., Z. Peng, and J.-F. Lee, "Multiscale electromagnetic computations using a hierarchical multilevel fast multipole algorithm," Radio Science, Vol. 49, 1022-1040, 2014.
doi:10.1002/2013RS005250

6. Pan, X. M., J. G. Wei, Z. Peng, and X. Q. Sheng, "A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm," Radio Science, Vol. 47, RS1011, Feb. 2012.

7. Zhu, X. and W. Lin, "Randomised pseudo-skeleton approximation and its application in electromagnetics," Electronics Letters, Vol. 47, No. 10, 590-592, 2011.
doi:10.1049/el.2011.0616

8. Goreinov, S. A., N. L. Zamarashkin, and E. E. Tyrtyshnikov, "Pseudoskeleton approximations by matrices of maximal volume," Math. Notes, Vol. 62, No. 4, 515-519, 1997.
doi:10.1007/BF02358985

9. Chai, W. and D. Jiao, "Theoretical study on the rank of integral operators for broadband electromagnetic modeling from static to electrodynamic frequencies," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3.12, 2113-2126, 2013.
doi:10.1109/TCPMT.2013.2261693

10. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

11. Lee, J, J. Zhang, and C. C. Lu, "Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2277-2287, Sep. 2004.
doi:10.1109/TAP.2004.834084