Vol. 57
Latest Volume
All Volumes
PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-10-29
A Novel Reconfigurable Spiral-Shaped Monopole Antenna for Biomedical Applications
By
Progress In Electromagnetics Research Letters, Vol. 57, 79-84, 2015
Abstract
In this paper, a new reconfigurable antenna is introduced. This antenna is a printed spiral-shaped monopole antenna with a compact structure. By embedding microwave switches in the structure of the antenna, different resonance frequencies can be achieved in different states of the switches. The introduced antenna is capable to cover two standard frequency bands for biomedical applications, i.e. Medical Implant Communication Service (MICS) and Industrial, Scientific and Medicine (ISM) bands. MICS band covers 402 MHz to 406 MHz and ISM covers 2.4 GHz to 2.5 GHz frequency range. The proposed antenna has a compact size of 32 mm×50.3 mm×1.8 mm, and it is fabricated on an FR4 substrate. The measurement results are in a good agreement with the simulations.
Citation
Maryam Salim, and Ali Pourziad, "A Novel Reconfigurable Spiral-Shaped Monopole Antenna for Biomedical Applications," Progress In Electromagnetics Research Letters, Vol. 57, 79-84, 2015.
doi:10.2528/PIERL15083103
References

1. Panagamuwa, C. J., A. Chauraya, and J. C. Vardaxoglou, "Frequency and beam reconfigurable antenna using photoconducting switches," IEEE Trans. Antennas Propag. Mag., Vol. 54, No. 2, 449-454, 2006.
doi:10.1109/TAP.2005.863393

2. Kirlazl, J., H. Ghali, H. Ragale, and H. Haddara, "Reconfigurable dual-band dipole antenna on silicon using series MEMS switches," IEEE Antennas and Propagation Society International Symposium 2003, Vol. 1, 403-406, 2003.

3. Zhang, S., "A pattern reconfigurable microstrip parasitic array: Theory, design, and applications," , Ph.D. University of Illinois at Urbana-Champaign, 2005.
doi:10.1109/LMWC.2003.808714

4. Huff, G. H., J. Feng, S. Zhang, and J. T. Bernhard, "A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna," IEEE Microwave and Wireless Components Letters, No. 2, 57-59, 2003.
doi:10.1109/TAP.2004.836425

5. Huff, G. H., J. Feng, S. Zhang, G. Cung, and J. T. Bernhard, "Directional reconfigurable antennas on laptop computers: Simulation, measurement and evaluation of candidate integration positions," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 12, 3220-3227, 2004.
doi:10.1109/TAP.2005.863376

6. Yang, S.-L. S. and K.-M. Luk, "Design of a wide-band L-probe patch antenna for pattern reconfiguration or diversity applications," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 433-438, 2006.
doi:10.1109/TAP.2006.872650

7. Martinez-Lorenzo, J. A., M. Arias, O. Rubinos, and J. Gutierrez, "A shaped and reconfigurable reflector antenna with sectorial beams for LMDS base station," IEEE transactions on antennas and propagation, Vol. 54, No. 4, 1346-1349, 2006.
doi:10.1109/TAP.2004.841339

8. Dimitrios, P., K. Sarabandi, and L. P. B. Katehi, "Design of reconfigurable slot antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 2, 645-654, 2005.
doi:10.1109/LAWP.2007.891955

9. Zhou, Z. and K. L. Melde, "Frequency agility of broadband antennas integrated with a reconfigurable RF impedance tuner," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 56-59, 2007.
doi:10.1109/LAWP.2008.921330

10. Yang, S.-L. S., A. Kishk, and K. F. Lee, "Frequency reconfigurable U-slot microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 127-129, 2008.
doi:10.1109/TAP.2004.825648

11. Pringle, L. N., P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prado, J. M. Morris, and G. S. Smith, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1434-1445, 2004.
doi:10.1109/7260.989863

12. Yang, F. and Y. Rahmat-Samii, "A reconfigurable patch antenna using switchable slots for circular polarization diversity," IEEE Microwave and Wireless Components Letters, Vol. 34, No. 3, 96-98, 2002.
doi:10.1109/TAP.2010.2044310

13. Poon, A., S. O’Driscoll, and T. H. Meng, "Optimal frequency for wireless power transmission into dispersive tissue," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1739-1750, 2010.
doi:10.1109/22.989979

14. Rosen, A., M. A. Stuchly, and A. V. Vorst, "Applications of RF/microwaves in medicine," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 963-974, 2002.
doi:10.1109/TAP.2005.858617

15. Patnaik, A., D. Anagnostou, C. G. Christodoulou, and J. C. Lyke, "Neurocomputational analysis of a multiband reconfigurable planar antenna," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 11, 3453-3458, 2005.
doi:10.1109/TAP.2007.898575

16. Ruvio, G., M. J. Ammann, and Z. N. Chen, "Wideband reconfigurable rolled planar monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1760-1767, 2007.
doi:10.1109/TBME.2010.2091128

17. Lim, H. B., D. Baumann, and E. Li, "A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks," IEEE Transactions on Biomedical Engineering, Vol. 58, No. 3, 689-697, 2011.
doi:10.1109/TBME.2009.2036372

18. Gilmore, C., P. Mojabi, A. Zakaria, M. Ostadrahimi, C Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, 894-904, 2010.
doi:10.1109/TAP.2009.2031917

19. Lea, A., P. Hui, J. Ollikainen, and R. G. Vaughan, "Propagation between on-body antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 11, 3619-3627, 2009.

20. Cho, N., T. Roh, J. Bae, and H. Yoo, "A planar MICS band antenna combined with a body channel communication electrode for body sensor network," IEEE Microwave and Wireless Components Letters, Vol. 57, No. 10, 2515-2522, 2009.