Vol. 58
Latest Volume
All Volumes
PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-01-15
Array-Fed Beam-Scanning Partially Reflective Surface (PRS) Antenna
By
Progress In Electromagnetics Research Letters, Vol. 58, 73-79, 2016
Abstract
A beam-scanning partially reflective surface (PRS) antenna is presented in this paper. By employing a reconfigurable feed network to a two-element phased array source, the PRS antenna can realize beam steering between -10° and 10° with respect to the broadside direction across an overlapped frequency range from 5.35 GHz to 5.76 GHz. Good agreement between the simulated and measured results is achieved, which validates its capability to be a good candidate for the modern communication systems.
Citation
Luyang Ji, Guang Fu, and Shu-Xi Gong, "Array-Fed Beam-Scanning Partially Reflective Surface (PRS) Antenna," Progress In Electromagnetics Research Letters, Vol. 58, 73-79, 2016.
doi:10.2528/PIERL15101802
References

1. Von Trentini, G., "Partially reflecting sheet arrays," IRE Trans. on Antenna Propag., Vol. 4, No. 4, 666-671, Oct. 1956.
doi:10.1109/TAP.1956.1144455

2. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," IEE Proc. - Microw. Antenns Propag., Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828

3. Guerin, N., S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A metallic Fabry-Perot directive antenna," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 209-215, Jan. 2006.

4. Wang, S., A. P. Feresidis, and J. C. Vardaxoglou, "High-gain subwavelength resonant cavity antenna based on metamaterial ground plane," Inst. Elect. Eng. Proc. Microw. Antenna Propag., Vol. 153, No. 1, 1-6, Feb. 2006.
doi:10.1049/ip-map:20050090

5. Weily, A. R., T. S. Bird, and Y. J. Guo, "A reconfigurable high-gain partially reflecting surface antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3382-3390, Nov. 2008.
doi:10.1109/TAP.2008.2005538

6. Guzman-Quiros, R., J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, "Electronically steerable 1-D Fabry-Perot leaky-wave antenna employing a tuneable high impedance surface," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5046-5055, Nov. 2012.
doi:10.1109/TAP.2012.2208089

7. Guzman-Quiros, R., J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, "Electronic full-space scanning with 1-D Fabry-Perot LWA using electromagnetic band gap," IEEE Antennas Wireless Propag. Lett.,, Vol. 11, 1426-1429, 2012.
doi:10.1109/LAWP.2012.2228624

8. Guzman-Quirós, R., J. L. Gómez-Tornero, A. R. Weily, and Y. J. Guo, "Electronically steerable 1-D Fabry-Perot leaky-wave antenna employing a tunable high impedance surface," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5046-5055, Nov. 2011.
doi:10.1109/TAP.2012.2208089

9. Ourir, A., S. N. Burokur, and A. de Lustrac, "Electronic beam steering of an active metamaterial-based directive subwavelength cavity," 2nd European Conference on Antennas and Propagation, Edinburgh, Nov. 2007.

10. Moghadas, H., M. Daneshmand, and P. Mousavi, "Single-layer partially reflective surface for an orthogonally-polarised dual-band high-gain resonant cavity antenna," IET Microwaves, Antennas & Propagation, Vol. 7, No. 8, 656-662, Jun. 2013.
doi:10.1049/iet-map.2012.0298

11. Debogovic, T. and J. Perruisseau-Carrier, "Array-fed partially reflective surface antenna with independent scanning and beamwidth dynamic control," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 446-449, Jan. 2014.
doi:10.1109/TAP.2013.2287018

12. Ding, C., Y. J. Guo, P.-Y. Qin, T. S. Bird, and Y. Yang, "A defected microstrip structure (DMS)-based phase shifter and its application to beamforming antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 641-651, Feb. 2014.
doi:10.1109/TAP.2013.2290802