Vol. 63
Latest Volume
All Volumes
PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-10-10
A Miniaturized Directional Coupler Using Complementary Split Ring Resonator and Dumbbell-Like Defected Ground Structure
By
Progress In Electromagnetics Research Letters, Vol. 63, 53-57, 2016
Abstract
A novel microstrip coupled-line directional coupler is proposed in this paper. It is based on the introduction of a complementary split ring resonator and dumbbell-like defected ground structure on the coupled lines to strongly enhance the designed backward coupling. The designed frequency band is from 1.2 to 1.5 GHz. The coupler is fabricated and tested. The insertion loss is less than 3.5 dB. The simulated and measured return losses are better than -13.5 dB, and the isolation is higher than 20 dB across the operating band. The overall size of the coupler is 80 mm×70 mm, which is about 0.36λ×0.32λ at the central frequency 1.35 GHz.
Citation
Lizhong Song, and Yuming Nie, "A Miniaturized Directional Coupler Using Complementary Split Ring Resonator and Dumbbell-Like Defected Ground Structure," Progress In Electromagnetics Research Letters, Vol. 63, 53-57, 2016.
doi:10.2528/PIERL16060302
References

1. Chudzik, M., I. Arnedo, A. Lujambio, I. Arregui, F. Teberio, M. Laso, and T. Lopetegi, "Microstrip coupled-line directional coupler with enhanced coupling based on ebg concept," Electronics Letters, Vol. 47, No. 23, 1284-1286, 2011.
doi:10.1049/el.2011.2156

2. Chi, P.-L. and T. Itoh, "Miniaturized dual-band directional couplers using composite right/left-handed transmission structures and their applications in beam pattern diversity systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 5, 1207-1215, 2009.
doi:10.1109/TMTT.2009.2017350

3. Hirota, A., Y. Tahara, and N. Yoneda, "A compact forward coupler using coupled composite right/left-handed transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 12, 3127-3133, 2009.
doi:10.1109/TMTT.2009.2034304

4. Elhiwairis, M. Y. O., S. K. B. A. Rahim, U. A. K. Okonkwo, N. B. M. Jizat, and M. F. B. Jamlos, "Miniaturized size branch line coupler using open stubs with high-low impedances," Progress In Electromagnetics Research Letters, Vol. 23, 65-74, 2011.
doi:10.2528/PIERL11022306

5. Wang, C.-C., C.-H. Lai, and T.-G. Ma, "Miniaturized coupled-line couplers using uniplanar synthesized coplanar waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 8, 2266-2276, 2010.
doi:10.1109/TMTT.2010.2052667

6. Djerafi, T. and K. Wu, "Super-compact substrate integrated waveguide cruciform directional coupler," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 11, 757-759, 2007.
doi:10.1109/LMWC.2007.908040

7. Hao, Z., W. Hong, J. X. Chen, H. Zhou, and K. Wu, "Single-layer substrate integrated waveguide directional couplers," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 153, No. 5, 426-431, 2006.
doi:10.1049/ip-map:20050171

8. Hsu, S.-K., C.-H. Tsai, and T.-L. Wu, "A novel miniaturized forward-wave directional coupler with periodical mushroom-shaped ground plane," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 8, 2277-2283, 2010.
doi:10.1109/TMTT.2010.2052869

9. Hsu, S.-K., J.-C. Yen, and T.-L.Wu, "A novel compact forward-wave directional coupler design using periodical patterned ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 5, 1249-1257, 2011.
doi:10.1109/TMTT.2011.2104978

10. Mandal, M. K. and S. Sanyal, "A novel defected ground structure for planar circuits," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 2, 93-95, 2006.
doi:10.1109/LMWC.2005.863192

11. Kim, C.-S., J.-S. Park, D. Ahn, and J.-B. Lim, "A novel 1-d periodic defected ground structure for planar circuits," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 4, 131-133, 2000.
doi:10.1109/75.846922

12. Kim, C.-S., J.-S. Lim, S. Nam, K.-Y. Kang, and D. Ahn, "Equivalent circuit modelling of spiral defected ground structure for microstrip line," Electronics Letters, Vol. 38, No. 19, 1, 2002.

13. Ahn, D., J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965

14. Baena, J. D., J. Bonache, F. Mart´ın, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. Laso, J. G. Garcia, I. Gil, M. F. Portillo, et al. "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211