Vol. 62
Latest Volume
All Volumes
PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-09-27
Design of Miniaturized and Ultrathin Absorptive/Transmissive Radome Based on Interdigital Square Loops
By
Progress In Electromagnetics Research Letters, Vol. 62, 117-123, 2016
Abstract
This paper designs a miniaturized and ultrathin absorptive/transmissive radome based on interdigital square loops. The thickness of designed radome is only 4.5 mm. The period of the radome is 10 mm, which is λ/17.5 (λ corresponding to the wavelength of center frequency of passband). In order to verify the transmission and reflection properties, a prototype is fabricated. Its effectiveness is verified by both synthetic experiments and measurements in the anechoic chamber. Furthermore, the oblique incidents are also evaluated for both the transmission coefficients and reflection coefficients.
Citation
Bo Yi, Liang Yang, and Peiguo Liu, "Design of Miniaturized and Ultrathin Absorptive/Transmissive Radome Based on Interdigital Square Loops," Progress In Electromagnetics Research Letters, Vol. 62, 117-123, 2016.
doi:10.2528/PIERL16080201
References

1. Costa, F. and A. Monorchio, "A frequency selective radome with wideband absorbing properties," IEEE Transactions on Antennas And Propagation, Vol. 60, No. 6, June 2012.
doi:10.1109/TAP.2012.2194640

2. Arceneaus, W. S., R. D. Akins, and W. B. May, "Absorptive/transmissive Radome,", U.S.Patent 5400,043, May 21, 1995.

3. Liu, L., Y. Li, Q. Meng, W. Wu, et al. "Design of an invisible radome by frequency selective surfaces loaded with lumped resistors," Chin. Phys. Lett., Vol. 30, No. 6, 064101, 2013.
doi:10.1088/0256-307X/30/6/064101

4. Chen, Q. and Y. Fu, "A planar stealthy antenna radome using absorptive frequency selective surface," Microwave and Optical Technology Letters, Vol. 56, 1788-1792, 2014.
doi:10.1002/mop.28442

5. Chen, Q., J. Bai, L. Chen, and Y. Fu, "A miniaturized absorptive frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 80-83, 2015.
doi:10.1109/LAWP.2014.2355252

6. Zhou, H., L. Yang, S. Qu, et al. "Experimental demonstration of an absorptive/transmissive FSS with magnetic material," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 114-117, 2014.
doi:10.1109/LAWP.2013.2296992

7. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

8. Zhang, S., Y. Ying, and X. Ren, "Interdigitated hexagon loop unit cells for wide band miniaturized frequency selective surfaces," 9th International Symposium on Antennas Propagation and EM Theory (ISAPE), 770-772, 2010.

9. Costa, F. and A. Monorchio, "Absorptive frequency selective radome," General Assembly and Scientific Symposium, 1-4, 2011.

10. Costa, F., A. Monorchio, and G. Manara, "An equivalent circuit model of frequency selective surfaces embedded within dielectric layers," Proc. IEEE Antennas and Propagation Society International Symposium, Charleston, SC, June 2009.

11. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency selective surfaces by a simple equivalent circuit model," IEEE Antenna And Propagation Magazine, Vol. 54, No. 4, 35-47, 2012.
doi:10.1109/MAP.2012.6309153

12. Han, Y., W. Che, and Y. Chang, "Investigation of thin and broadband capacitive surface based absorbers by the impedance analysis method," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 1, 22-26, 2015.
doi:10.1109/TEMC.2014.2358686