Vol. 65
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-01-16
Application of the Random Coupling Model to Electromagnetic Coupling Effect Analysis of Complex Double Cavity
By
Progress In Electromagnetics Research Letters, Vol. 65, 81-87, 2017
Abstract
For the difficulty of calculating and measuring coupling electromagnetic quantity of complex multi-cavities, a microwave chaotic double cavity model is designed, and a new method is put forward to analyze the coupling effect of the double cavities. The new method combines Random Coupling Model (RCM) and network cascade theory and can successfully predict the Probability Density Function (PDF) of the induced voltage at target point of the double cavity compared with other methods. Experiment is added to verify the effectiveness of the new method in this paper. In addition, the new method provides a new approach to analyze and predict the coupling electromagnetic quantity of the complex double cavities in practical engineering.
Citation
Jie-Qing Fan, Ying Pan, Jian-Hong Hao, and Heng-You Zhang, "Application of the Random Coupling Model to Electromagnetic Coupling Effect Analysis of Complex Double Cavity," Progress In Electromagnetics Research Letters, Vol. 65, 81-87, 2017.
doi:10.2528/PIERL16101201
References

1. Fan, J.-Q., J.-H. Hao, Y.-F. Gong, L.-H. Jiang, W.-Q. Yang, and B.-G. Zhang, "Shielding effectiveness of apertured cavity with obstacles," High Voltage Engineering, Vol. 41, No. 12, 4198-4206, 2015.

2. Luo, J.-W., P.-A. Du, D. Ren, and P. Xiao, "BLT equation-based approach for calculating shielding effectiveness of double layer rectangular enclosures with apertures," High Power Laser and Particle Beans, Vol. 27, No. 11, 113201, 2015.

3. Kan, Y., L.-P. Yan, X. Zhao, H.-J. Zhou, Q. Liu, and K.-M. Huang, "Electromagnetic topology based fast algorithm for shielding effectiveness estimation of multiple enclosures with apertures," Acat Physica Sinica, Vol. 65, No. 3, 030702, 2016.

4. Zheng, X., T. M. Antonsen, and E. Ott, "Statistics of impedance and scattering matrices of chaotic microwave cavities with multiple ports," Electromagnetics, Vol. 26, No. 1, 37-55, 2006.
doi:10.1080/02726340500214902

5. Hemmady, S., J. T. M. Antonsen, E. Ott, and S. M. Anlage, "Statistical prediction and measurement of induced voltages on components within complicated enclosures: A wave-chaotic approach," IEEE Trans. on Electromagnetic Compatibility, Vol. 54, No. 4, 758-771, 2012.
doi:10.1109/TEMC.2011.2177270

6. Li, X., C. Meng, Y.-N. Liu, and S. D. Hemmady, "Experimental verification of a stochastic topology approach for high-power microwave effects," IEEE Transactions on Electronic Compatibility, Vol. 57, No. 3, 1-6, 2015.
doi:10.1109/TEMC.2015.2437191

7. Yan, E.-Y., F.-B. Meng, and H.-G. Ma, "Application of random coupling model to high power microwave effects," High Power Laser and Particle Beams, Vol. 22, No. 3, 621-624, 2010.
doi:10.3788/HPLPB20102203.0621

8. Fan, J.-Q., J.-H. Hao, and L.-H. Jiang, "Statistical characteristics of coupling effect of complex cavity based on random coupling model," High Power Laser and Particle Beams, Vol. 27, No. 10, 290-296, 2015.