Vol. 66
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-02-06
Highly Selective Lossy Dual-Band Bandstop Filter Synthesis and Design Based on Predistortion Hybrid Dual-Band Elliptic Refection Function
By
Progress In Electromagnetics Research Letters, Vol. 66, 15-23, 2017
Abstract
This paper demonstrates a new class of highly selective bandstop filter based on cascading two identical lossy hybrid dual-band bandstop filters of low resonator Q factor. Each filter is synthesized based on multi-stage predistortion reflection mode technique. To demonstrate the approach, 4th order hybrid dual-band elliptic filter network which is a product of elliptic lowpass and highpass network functions has been predistorted and synthesized with low calculated Q factor. The lossy dual-band bandstop filters are fabricated and realized on microstrip planar structure. Both theoretical and experimental results clearly show good agreements with two stopband rejections up to 35 dB for one stage and 50 dB for two stages with passband loss of more than 10 dB.
Citation
Socheatra Soeung, Peng Wen Wong, and Sovuthy Cheab, "Highly Selective Lossy Dual-Band Bandstop Filter Synthesis and Design Based on Predistortion Hybrid Dual-Band Elliptic Refection Function," Progress In Electromagnetics Research Letters, Vol. 66, 15-23, 2017.
doi:10.2528/PIERL16112902
References

1. Hossain, E., M. Rasti, H. Tabassum, and A. Abdelnasser, "Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective," IEEE Wireless Communications, Vol. 21, 118-127, 2014.
doi:10.1109/MWC.2014.6845056

2. Han, S., X.-L. Wang, and Y. Fan, "Analysis and design of multiple-band bandstop filters," Progress In Electromagnetics Research, Vol. 70, 297-306, 2007.
doi:10.2528/PIER07020903

3. Ning, H., J. Wang, Q. Xiong, and L.-F. Mao, "Design of planar dual and triple narrow-band bandstop filters with independently controlled stopbands and improved spurious response," Progress In Electromagnetics Research, Vol. 131, 259-274, 2012.
doi:10.2528/PIER12072109

4. Wang, J., H. Ning, Q. Xiong, M. Li, and L.-F. Mao, "A novel miniaturized dual-band bandstop filter using dual-plane defected structures," Progress In Electromagnetics Research, Vol. 134, 397-417, 2013.
doi:10.2528/PIER12102313

5. Uchida, H. and Coauthors, "Dual-band-rejection filter for distortion reduction in RF transmitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 2550-2556, 2004.
doi:10.1109/TMTT.2004.837161

6. Ma, Z., K. Katsunori, K. Yoshio, A. Tetuo, and H. Gen, "Novel microstrip dual-band bandstop filter with controllable dual-stopband response," 2006 Asia-Pacific Microwave Conference, 1174-1177, 2006.

7. Ming, Y. and V. Miraftab, "Shrinking microwave filters," IEEE Microwave Magazine, Vol. 9, 40-54, 2008.

8. Oldoni, M., G. Macchiarella, G. G. Gentili, and C. Ernst, "A new approach to the synthesis of microwave lossy filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 1222-1229, 2010.
doi:10.1109/TMTT.2010.2045534

9. Guyette, A. C., I. C. Hunter, and R. D. Pollard, "Exact synthesis of microwave filters with nonuniform dissipation," IEEE/MTT-S International Microwave Symposium, 2007, 537-540, 2007.
doi:10.1109/MWSYM.2007.380545

10. Rhodes, J. D. and I. C. Hunter, "Synthesis of reflection-mode prototype networks with dissipative circuit elements," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 144, 437-442, 1997.
doi:10.1049/ip-map:19971410

11. Fathelbab, W. M., I. C. Hunter, and J. D. Rhodes, "Synthesis of lossy reflection-mode prototype networks with symmetrical and asymmetrical characteristics," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 146, 97-104, 1999.
doi:10.1049/ip-map:19990207

12. Soeung, S., P. W. Wong, and S. Cheab, "Lossy reflection mode dual-band bandstop prototype network based on hybrid elliptic filtering function," The 46th European Microwave Conference, 2016.

13. Hunter, I. C., Theory and Design of Microwave Filter, IEE, London, UK, 2001.
doi:10.1049/PBEW048E

14. Youla, D. C., "A new theory of cascade synthesis," IRE Trans. Circuit Theory, Vol. 8, 244, 1961.
doi:10.1109/TCT.1961.1086791

15. Scanlan, J. O. and J. D. Rhodes, "Unified theory of cascade synthesis," Proceedings of the Institution of Electrical Engineers, Vol. 117, 665-670, 1970.
doi:10.1049/piee.1970.0132

16. Pozar, D. M., Microwave Engineering, Wiley, 2012.