Vol. 66
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-03-10
E-Plane Five-Port Two-Way Waveguide Power Divider/Combiner with High Amplitude and Phase Consistency
By
Progress In Electromagnetics Research Letters, Vol. 66, 113-119, 2017
Abstract
This paper proposes a compact E-Plane five-port waveguide power combining and splitting structure in the V-band. The symmetrical five-port structure guarantees excellent amplitude and phase consistency between the input/output ports. Two isolation ports guarantee high isolation between the input/output ports. Meanwhile, the E-plane waveguide structure is more compact than H-plane structure. A two-way power combing structure working from 59 GHz to 64 GHz is designed, fabricated and measured for validating our structure. The measured results show that the phase and amplitude differences between the input ports are smaller than ±1.0 degree and ±0.1 dB, isolation between the input ports higher than 18 dB, the insertion loss and return loss lower than 0.2 dB and better than 17 dB, respectively.
Citation
Jinyi Ding, Liang Wu, Wei Shen, and Xiao-Wei Sun, "E-Plane Five-Port Two-Way Waveguide Power Divider/Combiner with High Amplitude and Phase Consistency," Progress In Electromagnetics Research Letters, Vol. 66, 113-119, 2017.
doi:10.2528/PIERL16120505
References

1. Wang, Z. X., B. Xiang, M. M. He, and W. B. Dou, "A waveguide-based millimeter-wave power combining network," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 14, 1716-1725, 2014.
doi:10.1080/09205071.2014.934923        Google Scholar

2. Hwang, K. C., "Design and optimization of a broadband waveguide magic-T using a stepped conducting cone," IEEE Microwave and Wireless Components Letters, Vol. 19, 539-541, 2009.
doi:10.1109/LMWC.2009.2027052        Google Scholar

3. Guo, Y., Y. Xu, L. Xia, and R. Xu, "Efficiency optimization of a Ka-band branch waveguide power divider," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 17-26, 2008.
doi:10.1163/156939308783122698        Google Scholar

4. Zheng, P., P. Zhou, and W.-H. Yu, "W-band power divider based on H-plane slot waveguide bridge," 2012 International Conference on Microwave and Millimeter Wave Technology, Vol. 2, 1-4, 2012.        Google Scholar

5. Hendrick, L. W. and R. Levy, "Design of waveguide narrow-wall short-slot couplers," IEEE Trans. Microwave Theory Tech., Vol. 48, 1771-1774, 2000.
doi:10.1109/22.873910        Google Scholar

6. Ding, J. Y., Q. Y. Wang, and Y. B. Zhang, "A novel five-port waveguide power divider," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 4, 224-226, 2013.
doi:10.1109/LMWC.2013.2295227        Google Scholar

7. Ding, J. Y., Q. Y. Wang, and Y. B. Zhang, "High-efficiency millimeter-wave spatial power combining structure," Electron. Lett., Vol. 51, 397-399, 2015.
doi:10.1049/el.2014.3695        Google Scholar

8. Martirano, G. and F. Vitulli, "A new multiple-tuned six-port riblet-type directional coupler in rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 51, 1441-1448, 2003.        Google Scholar

9. Wu, Y., X. Xie, and R. Xu, "A new millimeter-wave waveguide-based four-way power dividing/combining network," International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 3, 1-4, 2012.        Google Scholar

10. Yong, Y. S. and A. L. Y. Low, "Design and analysis of equal power divider using 4-branch waveguide," IEEE Journal of Quantum Electronics, Vol. 41, No. 9, 1181-1187, 2005.
doi:10.1109/JQE.2005.852990        Google Scholar

11. Hwang, K. C., "Design and optimization of a broadband waveguide magic-T using a stepped conducting cone," IEEE Microw. Wireless Compo. Lett., Vol. 19, No. 9, 539-541, 2009.
doi:10.1109/LMWC.2009.2027052        Google Scholar

12. Fan, L., C. Ho, S. Kanamaluru, and K. Chang, "Wide-band reduced-size unplanar magic-T, hybrid-ring, and de Ronde’s CPW-slot couplers," IEEE Trans. Microwave Theory Tech., Vol. 43, 2749-2758, 1995.
doi:10.1109/22.475631        Google Scholar

13. Tanaka, T., "Ridge-shaped narrow wall directional coupler using TE10, TE20 and TE30 modes," IEEE Trans. Microwave Theory Tech., Vol. 28, 239-245, 1980.
doi:10.1109/TMTT.1980.1130049        Google Scholar

14. Hildebrand, L. T., "Results for a simple compact narrow-wall directional coupler," IEEE Microwave and Guided Wave Letters, Vol. 10, 231-232, 2000.
doi:10.1109/75.852425        Google Scholar

15. Zhang, Y. B., Q. Y. Wang, and J. Y. Ding, "Short terminal load with broad bandwidth," Electron. Lett., Vol. 49, 1005-1007, 2013.
doi:10.1049/el.2013.0320        Google Scholar