Vol. 66
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-02-24
Design of a 212 GHz LO Source Used in the Terahertz Radiometer Front-End
By
Progress In Electromagnetics Research Letters, Vol. 66, 65-70, 2017
Abstract
We introduce a 212 GHz LO source which could be used to drive sub-harmonic mixer in the radiometer front-end. It mainly includes a phase-locked dielectric resonator, a 71 GHz power source and a 212 GHz tripler. Actually, design of 212 GHz tripler is the key technology in the LO chain because the research on W band source is relatively mature. Based on our former research work, there is a great improvement in the design of 212 GHz tripler. At room temperature, the measured efficiency is more than 9% in 208~218 GHz, and the maximum efficiency is about 14.5% at 215.5 GHz when being driven with 21.8 dBm of input power. Besides demand on the main technical specifications, the stability of each module is also extremely important since the front-end is designed to keep working for three months.
Citation
Jin Meng, De Hai Zhang, Chang Hong Jiang, Xin Zhao, and Xiao Peng Li, "Design of a 212 GHz LO Source Used in the Terahertz Radiometer Front-End," Progress In Electromagnetics Research Letters, Vol. 66, 65-70, 2017.
doi:10.2528/PIERL17010208
References

1. Wang, H., S. Rea, M. Henry, et al. "Schottky diode components for MetOp-SG satellites," IET Active and Passive RF Devices Seminar, 63, 2013.
doi:10.1049/ic.2013.0240

2. Thomas, B., M. Brandt, A. Walber, et al. "Millimeter & sub-millimeter wave radiometer instruments for the next generation of polar orbiting meteorological satellites - MetOp-SG," 39th International Conference on Infrared, Millimeter, and Terahertz Waves, 2014.

3. Thomas, B., M. Brandt, A. Walber, et al. "Submillimetre-wave receiver developments for ICI onboard MetOp-SG and ICI cloud remote sensing instruments," IEEE International Geoscience and Remote Sensing Symposium, 2012.

4. Gravel, J.-F. and J. S. Wight, "On the conception and analysis of a 12-GHz push-push phase-locked DRO," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 153-159, 2006.
doi:10.1109/TMTT.2005.860508

5. Yang, F., X.-H. Tang, and T. Wu, "The scheme and key components design of W-band coherent Doppler velocity radar front-end," 7th International Conference on ASIC, 2007.

6. Ingram, D. L., Y. C. Chen, I. Stones, et al. "Compact W-band solid-state MMIC high power sources," IEEE MTT-S International Microwave Symposium Digest, 2000.

7. Chen, Z., B. Yu, Y. Zhou, et al. "75-110 GHz integrated active sextupler module," IEEE International Wireless Symposium, 2015.

8. Meng, J., D. H. Zhang, C. F. Yao, and X. Zhao, "Design of a 225 GHz high output power tripler based on unbalanced structure," Progress In Electromagnetics Research C, Vol. 56, 101-108, 2015.
doi:10.2528/PIERC15012001

9. Zhang, Y., W. Zhong, T. Ren, et al. "A 220 GHz frequency tripler based on 3D electromagnetic model of the Schottky diode and the field-circuit co-simulation method," Microwave and Optical Technology Letters, Vol. 58, No. 7, 1647-1651, 2016.
doi:10.1002/mop.29877

10. Zhang, Y., Q.-Q. Lu, W. Liu, et al. "Design of a 220 GHz frequency tripler based om EM model of Schottky diodes," J. Infrated Millim. Waves, Vol. 23, No. 4, 405-411, 2014.

11. Maestrini, A., C. Tripon-Canseliet, J. S. Ward, et al. "A 260-340 GHz dual chip frequency tripler for THz frequency multiplier chains," Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics, 2006.

12. Porterfield, D. W., "High-efficiency Terahertz frequency tripler," IEEE MTT-S International Microwave Symposium, 337-340, Honolulu, Hawaii, 2007.