Vol. 66
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-02-21
A Frequency Reconfigurable Dual Pole Dual Band Bandpass Filter for X-Band Applications
By
Progress In Electromagnetics Research Letters, Vol. 66, 53-58, 2017
Abstract
This paper presents a frequency reconfigurable dual-pole, dual-band waveguide bandpass filter. Varactor diode and chip capacitor loaded planar split ring resonators are used on the transverse plane of a waveguide to form the filter. Numerical simulations are carried out using CST microwave studio (version 14). Measured result shows tuning range of the bands are 8.12-8.58 GHz and 10.22-10.68 GHz, respectively. The measured result shows good agreement with the simulated one. The total length of the proposed filter is 10 mm.
Citation
Amit Bage, and Sushrut Das, "A Frequency Reconfigurable Dual Pole Dual Band Bandpass Filter for X-Band Applications," Progress In Electromagnetics Research Letters, Vol. 66, 53-58, 2017.
doi:10.2528/PIERL17010504
References

1. Bage, A. and S. Das, "A compact, wideband waveguide bandpass filter using complementary loaded split ring resonators," Progress In Electromagnetics Research C, Vol. 64, 51-59, 2016.
doi:10.2528/PIERC16040102

2. Bage, A. and S. Das, "Wideband waveguide band-pass filter based on broadside complementary split ring resonator," Int. Conf. Microw. and Photonics (ICMAP), 1-2, 2015.

3. Jin, J. Y., X. Q. Lin, Y. Jiang, L.Wang, and Y. Fan, "A novel E-plane substrate inserted bandpass filter with high selectivity and compact size," Int. Journal of RF Microw. Comput. Aided Eng., Vol. 17, 451-456, 2007.

4. Jin, J. Y., X. Q. Lin, Y. Jiang, and Q. Xue, "A novel compact-plane waveguide filter with multiple transmission zeroes," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 10, 3374-3380, 2015.
doi:10.1109/TMTT.2015.2462825

5. Bernardi, P. and F. Valdoni, "Fundamentals of a new class of magnetically tunable waveguide filters," IEEE Trans. on Magnetics, Vol. 2, No. 3, 264-268, 1966.
doi:10.1109/TMAG.1966.1065816

6. Mias, C., "Waveguide and free-space demonstration of tunable frequency selective surface," Electro. Lett., Vol. 39, 850-852, 2003.
doi:10.1049/el:20030570

7. Mias, C., "Demonstration of wideband tuning of frequency selective surface in waveguide setup," Microw. Opt. Technol. Lett., Vol. 44, 412-416, 2005.
doi:10.1002/mop.20651

8. Tsakonas, C. and C. Mias, "Electrically-tunable band-stop filter with mechanically variable bandwidth," Microw. Opt. Technol. Lett., Vol. 48, 53-56, 2006.
doi:10.1002/mop.21258

9. Pelliccia, L., S. Bastioli, F. Casini, and R. Sorrentino, "High-Q MEMS-reconfigurable waveguide filters," Proceedings of the 40th European Microw. Conf., 1126-1129, 2010.

10. Pelliccia, L., S. Bastioli, F. Casini, and R. Sorrentino, "High Q tunable waveguide filters using ohmic RF MEMS switches," IEEE Trans. Microw. Theory Techniques, Vol. 63, No. 10, 3381-3390, 2015.
doi:10.1109/TMTT.2015.2459689

11. Mohottige, N., U. Jankovic, D. Budimir, and U. Jankovic, "Compact E-plane varactor-tuned bandpass filters," Antennas and Propag. Society Int. Symp. (APSURSI), 790-791, 2013.

12. Mohottige, N., B. Bukvic, and D. Budimir, "Reconfigurable E-plane waveguide resonators for filter applications," 44th European Microw. Conf., (EuMC), 299-301, 2014.
doi:10.1109/EuMC.2014.6986429

13. Mohottige, N., D. Budimir, and C. J. Panagamuwa, "Optically reconfigurable E-plane waveguide resonators and filters," 43rd European Microw. Conf., 798-801, 2013.

14. Zhang, M., P. Ye, F. Zhang, Y. Zhao, and J. Wang, "NOLM-based wavelength conversion with FBG band-pass filter for optical packet switching," Chin. Opt. Lett., Vol. 1, No. 3, 2003.

15. Vahabisani, N., S. Khan, and M. Daneshmand, "Microfluidically reconfigurable rectangular waveguide filter using liquid metal posts," IEEE Microw. and Wiresless Compon. Lett., Vol. 10, 801-803, 2016.
doi:10.1109/LMWC.2016.2605450

16. Macchiarella, G. and S. Tamiazzo, "Design techniques for dual-passband filters," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3265-3271, Nov. 2005.
doi:10.1109/TMTT.2005.855749

17. Amari, S. and M. Bekheit, "A new class of dual mode dual band waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 8, 1938-1944, 2008.
doi:10.1109/TMTT.2008.927411

18. Nocella, V., L. Pelliccia, C. Tomassoni, and R. Sorrentino, "Miniaturized dual band waveguide filter using TM dielectric-loaded dual-mode cavities," IEEE Microw. and Wiresless Compon. Lett., Vol. 26, No. 5, 310-312, 2016.
doi:10.1109/LMWC.2016.2549181

19. Lee, J., M. S. Uhm, and I. B. Yom, "A dual-passband filter of canonical structure for satellite applications," IEEE Microw. and Wiresless Compon. Lett., Vol. 14, No. 6, 310-312, 2004.
doi:10.1109/LMWC.2004.831800

20. Bage, A. and S. Das, "Compact triple band waveguide bandpass filter using concentric multiple complementary split ring resonator," Journal of Circuit System and Computers, Vol. 26, No. 6, 2017.
doi:10.1142/S0218126617500967