Vol. 66
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-03-31
RCS Reduction Using a Miniaturized Uni-Planar Electromagnetic Band Gap Structure for Circularly Polarized Microstrip Antenna Array
By
Progress In Electromagnetics Research Letters, Vol. 66, 135-141, 2017
Abstract
In this paper, a new method for radar cross section (RCS) reduction of circularly polarized (CP) microstrip antenna array with small element spacing is proposed. By employing the element rotation technique and loading EBG structures, the in-band and out-of-band RCSs are reduced simultaneously despite the extreme small space between array elements. The simulated results show that the proposed antenna has an average RCS reduction over 10 dB in the X-band for x-polarized and y-polarized incident waves impinging from normal direction compared to the original CP microstrip antenna array, indicating a fractional bandwidth of 40%. The maximum RCS reduction is over 25 dB. Meanwhile, the radiation performance of the proposed antenna array is kept.
Citation
Lei Zhang, and Tao Dong, "RCS Reduction Using a Miniaturized Uni-Planar Electromagnetic Band Gap Structure for Circularly Polarized Microstrip Antenna Array," Progress In Electromagnetics Research Letters, Vol. 66, 135-141, 2017.
doi:10.2528/PIERL17011504
References

1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, SciTech Publishing, Raleigh, 2004.
doi:10.1049/SBRA026E

2. Gong, S. X. and Y. Liu, Prediction and Reduction of Antenna Radar Cross Section, Xidian University Press, 2010.

3. Liu, Y., K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 326-331, 2016.
doi:10.1109/TAP.2015.2497352

4. Li, W. Q., X. Y. Cao, J. Gao, Q. Yang, and S. J. Li, "A novel low RCS microstrip antenna," 3th Asia-Pacific Conference on Antennas and Propagation, 495-498, Harbin, China, August 2014.

5. Dikmen, C. M., S. Cimen, and G. Cakir, "Planar octagonal-shaped UWB antenna with reduced radar cross section," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2946-2953, 2014.
doi:10.1109/TAP.2014.2313855

6. Huang, C., W. B. Pan, X. L. Ma, and X. G. Luo, "Wideband radar cross section reduction of a stacked patch array antenna using metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1369-1372, 2015.
doi:10.1109/LAWP.2015.2407375

7. Genovesi, S., F. Costa, and A. Monorchio, "Wideband radar cross section reduction of slots antennas arrays," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 163-167, 2014.
doi:10.1109/TAP.2013.2287888

8. Nasimuddin, Z., N. Chen, and X. M. Qing, "Bandwidth enhancement of single-feed circularly polarized antenna using meta-surface," IEEE Antennas and Propagation Magazine, Vol. 58, No. 2, 36-49, 2016.
doi:10.1109/MAP.2016.2520257

9. Agarwal, K., Nasimuddin, and A. Alphones, "RIS-based compact circularly polarized microstrip," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 549-554, 2013.
doi:10.1109/TAP.2012.2225816

10. Munk, B. A., Frequency Selective Surface, Theory and Design, Wiley, New York, NY, USA, 2000.
doi:10.1002/0471723770

11. Zheng, J. and S. J. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016.
doi:10.2528/PIERL15122702

12. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2327-2335, 2012.
doi:10.1109/TAP.2012.2189701

13. Agarwal, K., Nasimuddin, and A. Alphones, "Unidirectional wideband circularly polarized aperture antennas backed with artificial magnetic conductor reflectors," IET Microw. Antennas Propag., Vol. 7, No. 5, 338-346, 2013.
doi:10.1049/iet-map.2012.0580

14. Agarwal, K., Nasimuddin, and A. Alphones, "Wideband circularly polarized AMC reflector backed aperture antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1456-1461, 2013.
doi:10.1109/TAP.2012.2227446

15. Zhang, J. J., J. H. Wang, M. E. Chen, and Z. Zhang, "RCS reduction of patch array antenna by electromagnetic band-gap structure," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1048-1051, 2012.
doi:10.1109/LAWP.2012.2215832

16. Zheng, Y. J., J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, "Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1582-1585, 2015.
doi:10.1109/LAWP.2015.2413456

17. Simovski, C. R., P. D. Maagt, and I. V. Melchakova, "High-impedance surfaces having stable resonance with respect to polarization and incidence angle," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 908-914, 2005.
doi:10.1109/TAP.2004.842598

18. Maci, S., M. Caiazzo, A. Cucini, and M. Casaletti, "A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 70-81, 2005.
doi:10.1109/TAP.2004.840520

19. Yang, P., F, Yan, F, Yang, and T. Dong, "Microstrip phase-array in-band RCS reduction with a random rotation technique," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2513-2518, 2016.
doi:10.1109/TAP.2016.2543781