1. Jornet, J. M. and I. F. Akyildiz, "Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band," Antennas Propag. EuCAP 2010 Proc. Fourth Eur. Conf., 1-5, 2010. Google Scholar
2. Geizutis, A., A. Krotkus, K. Bertulis, G. Molis, R. Adomavicius, A. Urbanowicz, et al. "Terahertz radiation emitters and detectors," Opt. Mater. (Amst)., Vol. 30, 786-788, 2008.
doi:10.1016/j.optmat.2007.02.039 Google Scholar
3. Siegel, P. H., "Terahertz technology," IEEE Trans. Microw. Theory Tech., Vol. 50, 910-928, 2002.
doi:10.1109/22.989974 Google Scholar
4. Zhu, B., Y. Chen, K. Deng, W. Hu, and Z. S. Yao, "Terahertz science and technology and applications," PIERS Proceedings, 1166-1170, Beijing, China, Mar. 23-27, 2009. Google Scholar
5. Koutsoupidou, M., I. S. Karanasiou, and N. Uzunoglu, "Rectangular patch antenna on split-ring resonators substrate for THz brain imaging: Modeling and testing," 13th IEEE Int. Conf. Bioinforma. Bioeng. IEEE BIBE 2013, 9-12, 2013. Google Scholar
6. Kashyap, S. S. and V. Dwivedi, "Stacked swastika shape microstrip patch antenna for terahertz applications," Proc. 2014 2nd Int. Conf. “Emerging Technol. Trends Electron. Commun. Networking”, ET2ECN 2014, 1-5, 2015. Google Scholar
7. Tan, P., J. Huang, K. Liu, Y. Xiong, and M. Fan, "Terahertz radiation sources based on free electron lasers and their applications," Sci. China Inf. Sci., Vol. 55, 1-15, 2012.
doi:10.1007/s11432-011-4515-1 Google Scholar
8. Kim, K. Y., A. J. Taylor, J. H. Glownia, and G. Rodriguez, "Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions," Nat. Photonics, Vol. 2, 605-609, 2008.
doi:10.1038/nphoton.2008.153 Google Scholar
9. Pierantoni, L., M. Bozzi, R. Moro, D. Mencarelli, and S. Bellucci, "On the use of electrostatically doped graphene: Analysis of microwave attenuators," 2014 Int. Conf. Numer. Electromagn. Model. Optim. RF, Microwave, Terahertz Appl. NEMO 2014, 8-11, 2014. Google Scholar
10. Kemp, M. C., P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, Security Applications of Terahertz Technology, Vol. 5070, 44-52, 2003.
doi:10.1117/12.500491
11. Watts, C. M., D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, et al. "Terahertz compressive imaging with metamaterial spatial light modulators," Nat. Photonics, Vol. 8, 605-609, 2014.
doi:10.1038/nphoton.2014.139 Google Scholar
12. Siegel, P. H., "THz Technology in biology and medicine, instrumentation," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 0-3, 2004.
doi:10.1109/TMTT.2004.835916 Google Scholar
13. Cai, Y., Y. J. Guo, P. Y. Qin, and A. R. Weily, "Frequency reconfigurable quasi-Yagi dipole antenna," 2010 IEEE Int. Symp. Antennas Propag. CNC-USNC/URSI Radio Sci. Meet. --- Lead. Wave, AP-S/URSI 2010, Vol. 58, 2742-2747, 2010. Google Scholar
14. Piazza, D., P. Mookiah, M. D’Amico, and K. R. Dandekar, "Pattern and polarization reconfigurable circular patch for MIMO systems," 3rd European Conference on Antennas Propagation, 2009, EuCAP 2009, Vol. 59, 1047-1051, 2009. Google Scholar
15. Chang, Z., L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, "Generation of THz wave with orbital angular momentum by graphene patch reflectarray," 2015 IEEE MTT-S Int. Microw. Work. Ser. Adv. Mater. Process. RF THz Appl. IEEE MTT-S IMWS-AMP 2015 --- Proc., 9-11, 2015. Google Scholar
16. Mazlouman, S. J., M. Soleimani, A. Mahanfar, C. Menon, and R. G. Vaughan, "Pattern reconfigurable square ring patch antenna actuated by hemispherical dielectric elastomer," Electron. Lett., Vol. 47, 164-U22, 2011.
doi:10.1049/el.2010.3585 Google Scholar
17. Surface, H., Y. Huang, L.-S.Wu, M. Tang, J. Mao, and H. Surface, "Design of a beam reconfigurable THz antenna with graphene-based switchable," IEEE Trans. Nanotechnology, Vol. 11, 836-842, 2012.
doi:10.1109/TNANO.2012.2202288 Google Scholar
18. Geim, A. K. and K. S. Novoselov, "The rise of graphene," Nat. Mater., Vol. 6, 183-191, 2007.
doi:10.1038/nmat1849 Google Scholar
19. Falkovsky, L. A., "Optical properties of graphene," Journal of Physics: Conference Series, Vol. 129, 1, 2008.
doi:10.1088/1742-6596/129/1/012004 Google Scholar
20. Loh, K. P., Q. Bao, G. Eda, and M. Chhowalla, "Graphene oxide as a chemically tunable platform for optical applications," Nat. Chem., Vol. 2, 1015-1024, 2010.
doi:10.1038/nchem.907 Google Scholar
21. Castro Neto, A. H., N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys., Vol. 81, 109-162, 2009.
doi:10.1103/RevModPhys.81.109 Google Scholar
22. Ajlani, H., M. K. Azizi, A. Gharsallah, and M. Oueslati, "Graphene-GaAs-graphene stacked layers for the improvement of the transmission at the wavelength of 1.55 μm," Opt. Mater., Vol. 57, 120-124, 2016.
doi:10.1016/j.optmat.2016.04.031 Google Scholar
23. Ajlani, H., M. Karim, A. Gharsallah, and A. Meftah, "Graphene-based reconfigurable transmission filter near the wavelength of 1. 55 μm," Opt. Mater., Vol. 66, 201-206, 2017.
doi:10.1016/j.optmat.2017.02.016 Google Scholar
24. Zhang, J., G. Wang, B. Zhang, T. He, Y. He, and J. Shen, "Photo-excited broadband tunable terahertz metamaterial absorber," Opt. Mater. (Amst)., Vol. 54, 32-36, 2016.
doi:10.1016/j.optmat.2016.02.011 Google Scholar
25. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., 103, 2008. Google Scholar
26. Gusynin, V. P., S. G. Sharapov, and J. P. Carbotte, "Magneto-optical conductivity in graphene," J. Phys. Condens. Matter., Vol. 19, 026222, 2007.
doi:10.1088/0953-8984/19/2/026222 Google Scholar