Vol. 71
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-10-25
Terahertz Graphene-Based Reconfigurable Patch Antenna
By
Progress In Electromagnetics Research Letters, Vol. 71, 69-76, 2017
Abstract
The radiation properties of a copper-patch antenna designed for resonating at the frequency of 0.7 THz, which is used in aerospace applications, is presented. These properties are then compared to those of a graphene-patch antenna presenting the same dimensions. We show how the use of graphene, as a tunable material, allows to dynamically modify the frequency of operation of the antenna as well as its radiation pattern. Our results show that the return loss peak reaches -29 dB, at the operating frequency, which is almost twice the value obtained with the copper patch. This increase in the return loss peak is also accompanied by an improvement in the gain of the antenna from 5.73 dB in the case of the copper patch to 7.16 dB in the case of graphene. We focus our interest on how the reconfigurable radiation properties of the graphene-patch antenna are directly related to the graphene surface conductivity.
Citation
Mohamed Karim Azizi, Mohamed Amin Ksiksi, Hosni Ajlani, and Ali Gharsallah, "Terahertz Graphene-Based Reconfigurable Patch Antenna," Progress In Electromagnetics Research Letters, Vol. 71, 69-76, 2017.
doi:10.2528/PIERL17081402
References

1. Jornet, J. M. and I. F. Akyildiz, "Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band," Antennas Propag. EuCAP 2010 Proc. Fourth Eur. Conf., 1-5, 2010.        Google Scholar

2. Geizutis, A., A. Krotkus, K. Bertulis, G. Molis, R. Adomavicius, A. Urbanowicz, et al. "Terahertz radiation emitters and detectors," Opt. Mater. (Amst)., Vol. 30, 786-788, 2008.
doi:10.1016/j.optmat.2007.02.039        Google Scholar

3. Siegel, P. H., "Terahertz technology," IEEE Trans. Microw. Theory Tech., Vol. 50, 910-928, 2002.
doi:10.1109/22.989974        Google Scholar

4. Zhu, B., Y. Chen, K. Deng, W. Hu, and Z. S. Yao, "Terahertz science and technology and applications," PIERS Proceedings, 1166-1170, Beijing, China, Mar. 23-27, 2009.        Google Scholar

5. Koutsoupidou, M., I. S. Karanasiou, and N. Uzunoglu, "Rectangular patch antenna on split-ring resonators substrate for THz brain imaging: Modeling and testing," 13th IEEE Int. Conf. Bioinforma. Bioeng. IEEE BIBE 2013, 9-12, 2013.        Google Scholar

6. Kashyap, S. S. and V. Dwivedi, "Stacked swastika shape microstrip patch antenna for terahertz applications," Proc. 2014 2nd Int. Conf. “Emerging Technol. Trends Electron. Commun. Networking”, ET2ECN 2014, 1-5, 2015.        Google Scholar

7. Tan, P., J. Huang, K. Liu, Y. Xiong, and M. Fan, "Terahertz radiation sources based on free electron lasers and their applications," Sci. China Inf. Sci., Vol. 55, 1-15, 2012.
doi:10.1007/s11432-011-4515-1        Google Scholar

8. Kim, K. Y., A. J. Taylor, J. H. Glownia, and G. Rodriguez, "Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions," Nat. Photonics, Vol. 2, 605-609, 2008.
doi:10.1038/nphoton.2008.153        Google Scholar

9. Pierantoni, L., M. Bozzi, R. Moro, D. Mencarelli, and S. Bellucci, "On the use of electrostatically doped graphene: Analysis of microwave attenuators," 2014 Int. Conf. Numer. Electromagn. Model. Optim. RF, Microwave, Terahertz Appl. NEMO 2014, 8-11, 2014.        Google Scholar

10. Kemp, M. C., P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, Security Applications of Terahertz Technology, Vol. 5070, 44-52, 2003.
doi:10.1117/12.500491

11. Watts, C. M., D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, et al. "Terahertz compressive imaging with metamaterial spatial light modulators," Nat. Photonics, Vol. 8, 605-609, 2014.
doi:10.1038/nphoton.2014.139        Google Scholar

12. Siegel, P. H., "THz Technology in biology and medicine, instrumentation," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 0-3, 2004.
doi:10.1109/TMTT.2004.835916        Google Scholar

13. Cai, Y., Y. J. Guo, P. Y. Qin, and A. R. Weily, "Frequency reconfigurable quasi-Yagi dipole antenna," 2010 IEEE Int. Symp. Antennas Propag. CNC-USNC/URSI Radio Sci. Meet. --- Lead. Wave, AP-S/URSI 2010, Vol. 58, 2742-2747, 2010.        Google Scholar

14. Piazza, D., P. Mookiah, M. D’Amico, and K. R. Dandekar, "Pattern and polarization reconfigurable circular patch for MIMO systems," 3rd European Conference on Antennas Propagation, 2009, EuCAP 2009, Vol. 59, 1047-1051, 2009.        Google Scholar

15. Chang, Z., L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, "Generation of THz wave with orbital angular momentum by graphene patch reflectarray," 2015 IEEE MTT-S Int. Microw. Work. Ser. Adv. Mater. Process. RF THz Appl. IEEE MTT-S IMWS-AMP 2015 --- Proc., 9-11, 2015.        Google Scholar

16. Mazlouman, S. J., M. Soleimani, A. Mahanfar, C. Menon, and R. G. Vaughan, "Pattern reconfigurable square ring patch antenna actuated by hemispherical dielectric elastomer," Electron. Lett., Vol. 47, 164-U22, 2011.
doi:10.1049/el.2010.3585        Google Scholar

17. Surface, H., Y. Huang, L.-S.Wu, M. Tang, J. Mao, and H. Surface, "Design of a beam reconfigurable THz antenna with graphene-based switchable," IEEE Trans. Nanotechnology, Vol. 11, 836-842, 2012.
doi:10.1109/TNANO.2012.2202288        Google Scholar

18. Geim, A. K. and K. S. Novoselov, "The rise of graphene," Nat. Mater., Vol. 6, 183-191, 2007.
doi:10.1038/nmat1849        Google Scholar

19. Falkovsky, L. A., "Optical properties of graphene," Journal of Physics: Conference Series, Vol. 129, 1, 2008.
doi:10.1088/1742-6596/129/1/012004        Google Scholar

20. Loh, K. P., Q. Bao, G. Eda, and M. Chhowalla, "Graphene oxide as a chemically tunable platform for optical applications," Nat. Chem., Vol. 2, 1015-1024, 2010.
doi:10.1038/nchem.907        Google Scholar

21. Castro Neto, A. H., N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys., Vol. 81, 109-162, 2009.
doi:10.1103/RevModPhys.81.109        Google Scholar

22. Ajlani, H., M. K. Azizi, A. Gharsallah, and M. Oueslati, "Graphene-GaAs-graphene stacked layers for the improvement of the transmission at the wavelength of 1.55 μm," Opt. Mater., Vol. 57, 120-124, 2016.
doi:10.1016/j.optmat.2016.04.031        Google Scholar

23. Ajlani, H., M. Karim, A. Gharsallah, and A. Meftah, "Graphene-based reconfigurable transmission filter near the wavelength of 1. 55 μm," Opt. Mater., Vol. 66, 201-206, 2017.
doi:10.1016/j.optmat.2017.02.016        Google Scholar

24. Zhang, J., G. Wang, B. Zhang, T. He, Y. He, and J. Shen, "Photo-excited broadband tunable terahertz metamaterial absorber," Opt. Mater. (Amst)., Vol. 54, 32-36, 2016.
doi:10.1016/j.optmat.2016.02.011        Google Scholar

25. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., 103, 2008.        Google Scholar

26. Gusynin, V. P., S. G. Sharapov, and J. P. Carbotte, "Magneto-optical conductivity in graphene," J. Phys. Condens. Matter., Vol. 19, 026222, 2007.
doi:10.1088/0953-8984/19/2/026222        Google Scholar