Vol. 71
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-11-01
Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency
By
Progress In Electromagnetics Research Letters, Vol. 71, 91-96, 2017
Abstract
A nonlinear metamaterial composite structure with tunable tunneling frequency is presented. Based on theoretical calculation results, a nonlinear metamaterial sandwich structure constructed by epsilon negative metamaterial (ENM), mu negative metamaterial (MNM) and nonlinear double negative metamaterial (NDNM) is designed, and its nonlinear properties are investigated. The measured results show that the tunneling frequency of the sandwich structure ENM-NDNM-MNM can be controlled conveniently by signal power.
Citation
Tuanhui Feng, Hongpei Han, Limin Wang, and Fei Yang, "Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency," Progress In Electromagnetics Research Letters, Vol. 71, 91-96, 2017.
doi:10.2528/PIERL17081405
References

1. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed material," Phys. Rev. Lett., Vol. 85, 2933, 2000.
doi:10.1103/PhysRevLett.85.2933        Google Scholar

2. Grbic, A. and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett., Vol. 92, 117403, 2004.
doi:10.1103/PhysRevLett.92.117403        Google Scholar

3. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.
doi:10.1126/science.1125907        Google Scholar

4. Ginis, V., P. Tassin, C. M. Soukoulis, and I. Veretennicoff, "Enhancing optical gradient forces with metamaterials," Phys. Rev. Lett., Vol. 110, 057401, 2013.
doi:10.1103/PhysRevLett.110.057401        Google Scholar

5. Sreekanth, K. V., A. D. Luca, and G. Strangi, "Negative refraction in graphene-based hyperbolic metamaterials," Appl. Phys. Lett., Vol. 103, 023107, 2013.
doi:10.1063/1.4813477        Google Scholar

6. Henriquez, V. C., V. M. Garcia-Chocano, and J. Sanchez-Dehesa, "Viscothermal losses in double-negative acoustic metamaterials," Phys. Rev. Appl., Vol. 8, 014029, 2017.
doi:10.1103/PhysRevApplied.8.014029        Google Scholar

7. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, 2558, 2003.
doi:10.1109/TAP.2003.817553        Google Scholar

8. Fujishige, T., C. Caloz, and T. Itoh, "Experiment demonstration of transparency in the ENG-MNG pair in a CRLH transmission-line implementation," Microwave Opt. Tech. Lett., Vol. 46, 476, 2005.
doi:10.1002/mop.21022        Google Scholar

9. Feng, T. H., Y. H. Li, J. Y. Guo, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Highly localized mode in a structure made of epsilon-negative and mu-negative metamaterial," J. Appl. Phys., Vol. 104, 013107, 2008.
doi:10.1063/1.2949264        Google Scholar

10. Feng, T. H., Y. H. Li, H. T. Jiang, Y. Sun, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Electromagnetic tunneling in a sandwich structure containing single negative media," Phys. Rev. E, Vol. 79, 026601, 2009.
doi:10.1103/PhysRevE.79.026601        Google Scholar

11. Jiang, H. T., H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, "Properties of one-dimensional photonic crystals containing single-negative materials," Phys. Rev. E, Vol. 69, 066607, 2004.
doi:10.1103/PhysRevE.69.066607        Google Scholar

12. Zhang, L. W., Y. W. Zhang, L. He, H. Q. Li, and H. Chen, "Experimental study of photonic crystals consisting of ε-negative and μ-negative materials," Phys. Rev. E, Vol. 74, 056615, 2006.
doi:10.1103/PhysRevE.74.056615        Google Scholar

13. Wang, Z. L., H. T. Jiang, Y. H. Li, and H. Chen, "Enhancement of self-collimated fields in photonic crystals consisting of two kinds of single-negative materials," Opt. Express, Vol. 18, 14311, 2010.
doi:10.1364/OE.18.014311        Google Scholar

14. Feng, T. H., F. Yang, Y. H. Li, et al. "Light tunneling effect tuned by a meta-interface with electromagnetically-induced-transparency-like properties," Appl. Phys. Lett., Vol. 102, 251908, 2013.
doi:10.1063/1.4810020        Google Scholar

15. Shadrivov, I. V., A. A. Zharov, and Y. S. Kivshar, "Second-harmonic generation in nonlinear left-handed metamaterials," J. Opt. Soc. Am. B, Vol. 23, 529, 2006.
doi:10.1364/JOSAB.23.000529        Google Scholar

16. Litchinitser, N. M., I. R. Gabitov, and A. I. Maimistov, "Optical bistability in a nonlinear optical coupler with a negative index channel," Phys. Rev. Lett., Vol. 99, 113902, 2007.
doi:10.1103/PhysRevLett.99.113902        Google Scholar

17. Wang, Z. Y., Y. Luo, T. Jiang, et al. "Harmonic image reconstruction assisted by a nonlinear metmaterial surface," Phys. Rev. Lett., Vol. 106, 047402, 2011.
doi:10.1103/PhysRevLett.106.047402        Google Scholar

18. De Ceglia, D., M. A. Vincenti, S. Campione, et al. "Second-harmonic double-resonance cones in dispersive hyperbolic metamaterials," Phys. Rev. B, Vol. 89, 075123, 2014.
doi:10.1103/PhysRevB.89.075123        Google Scholar

19. Nouri, N. and M. Zavvari, "Second-harmonic generation in iii-nitride quantum wells enhanced by metamaterials," IEEE Photonics Technology Letters, Vol. 28, 2199, 2016.
doi:10.1109/LPT.2016.2587680        Google Scholar

20. Deska, R., K. Sadecka, et al. "Nonlinear plasmonics in eutectic composites: Second harmonic generation and two-photon luminescence in a volumetric Bi2O3-Ag metamaterial," Appl. Phys. Lett., Vol. 110, 031102, 2017.
doi:10.1063/1.4974208        Google Scholar