1. Tesla, N., Transmission of electrical energy without wire, Elect. World Eng., Mar. 5, 1904, Online Available: www.tfcbooks.com/tesla/.
2. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, Jul., 2007.
doi:10.1126/science.1143254
3. Shonohara, N., Wireless Power Transfer via Radiowaves, ISTE Ltd and John Wiley & Sons, Inc, 2014.
4. Awai, I., "Magnetic resonant wireless power transfer," Nikkei Electronics, 2011.
5. Ohira, T., "Maximum available efficiency formulation based on a black-box model of linear twoport power transfer systems," IEICE Electronics Express, ELEX, Vol. 11, No. 13, 1-6, 2014.
6. Awai, I., Y. Zhang, T. Komori, and T. Ishizaki, "Coupling coefficient of spiral resonators used for wireless power transfer," 2010 Asia-Pacific Microwave Conference, 773-776, Dec. 2010.
7. Zhang, Y., T. Yoshikawa, and I. Awai, "Analysis of electric and magnetic coupling components for spiral resonators used in wireless power transfer," 2014 Asia-Pacific Microwave Conference, 1366-1368, Nov. 2014.
8. Awai, I. and T. Ishizaki, "Design of magnetic resonance type WPT systems based on filter theory," Electronics and Communications in Japan, Vol. 96, No. 10, 1-11, 2013.
doi:10.1002/ecj.11543
9. Hui, S. Y. R., "Magnetic resonance for wireless power transfer [A look back]," IEEE Power Electronics Magazine, Vol. 3, No. 1, 14-31, 2016.
doi:10.1109/MPEL.2015.2510441
10. Zhang, J., X. Yuan, C.Wang, and Y. He, "Comparative analysis of two-coil and three-coil structures for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 32, No. 1, 341-352, 2017.
doi:10.1109/TPEL.2016.2526780
11. Tierney, B. B. and A. Grbic, "Design of self-matched planar loop resonators for wireless nonradiative power transfer," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 909-919, 2014.
doi:10.1109/TMTT.2014.2303940
12. Awai, I., S. Iwamujra, H. Kubo, and A. Sanada, "Separation of coupling coefficient between resonators into electric and magnetic contributions," IEICE Trans. Electron, Vol. J88-C, No. 12, 1033-1039, 2005.
13. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
doi:10.1002/0471221619
14. Awai, I. and Y. Zhang, "Coupling coefficient of resonators," IEICE Trans. Electron, Vol. J89-C, No. 12, 962-968, 2006.
15. Elnaggar, S. Y., R. J. Tervo, and S. M. Mattar, "Coupled mode theory applied to resonators in the presence of conductors," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 7, 2124-2132, 2015.
doi:10.1109/TMTT.2015.2432766
16. Awai, I., Y. Sawahara, and T. Ishizaki, "Choice of resonators for a WPT system in lossy materials," IEEE WPTC 2014, T-Fr3-4, May 2014.