Vol. 80
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-05-27
An Overview of UWB Antennas for Microwave Imaging Systems for Cancer Detection Purposes
By
Progress In Electromagnetics Research B, Vol. 80, 173-198, 2018
Abstract
In the last decades, microwave imaging has been a new area of research due to its many advantages over current imaging systems. Microwave imaging system is used for in-depth inspection of biological tissues. The test provides the identification of morphological changes in these biological tissues, as well as their locations. The emerging Ultra-Wideband (UWB) microwave imaging gives better result with the main advantage of using non-ionizing radiation. In these systems, antennas play a very important role, and as such, their optimization has become a very important topic because of the device is placed close to the human body. Thus, many aspects are of great importance in the design of the antennas starting from the material with which it is constructed, its dimensions, operation bandwidth, human body influence on the antenna parameters, short-pulse propagation, etc. Recent research has shown several efforts in improving the electromagnetic sensors used in these systems, either as individual or array elements. In this paper, we provide an overview of the most relevant developments in the field of UWB high directivity sensors used in microwave imaging systems.
Citation
Berenice Borja, José Alfredo Tirado-Méndez, and Hildeberto Jardon-Aguilar, "An Overview of UWB Antennas for Microwave Imaging Systems for Cancer Detection Purposes," Progress In Electromagnetics Research B, Vol. 80, 173-198, 2018.
doi:10.2528/PIERB18030302
References

1. Shin, S., El cancer, https://www.aecc.es/SobreElCancer/elcancer/Paginas/Elcancer.aspx, accessed Enero, 2017.

2. Farinas-Coronado, W., Z. Paz, G. J. Orta, and E. Rodriguez-Denis, "Estudio del factor de disipacion dielectrica como herramienta diagnostica," Revista Biomdica, Vol. 13, No. 4, 249-255, 2002.        Google Scholar

3. Fass, L., "Imaging and cancer: A review," Molecular Oncology, Vol. 2, No. 2, 115-152, 2008.        Google Scholar

4. Gallego, A. R., "Riesgos derivados de la exposicion a dosis bajas de radiacion ionizante," Revista de Salud Ambiental, Vol. 10, No. 1-2, 43-48, 2010.        Google Scholar

5. Nunez, M., "Efectos biologicos de las radiaciones-dosimetra," Escuela Universitaria de Tecnologia Medica UdelaR Comite de Tecnologos de ALASBIMN, Montevideo, Uruguay, 2008.        Google Scholar

6. Roldan, T., V. Aramburu, G. Leguizamon, and C. Hoffmann, "Efectos Biologicos de las radiaciones Ionizantes," Ciencia, Vol. 1, No. 1, 321-330, 2003.        Google Scholar

7. Real Gallego, A., "Efectos biologicos de las radiaciones ionizantes," Master de Fisica Biomedica, Vol. Facultad CC, Fisicas-UCM, 2014.        Google Scholar

8. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, No. 12, 1470-1479, 1998.        Google Scholar

9. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 783-791, 1999.        Google Scholar

10. Fear, E. C. and M. A. Stuchly, "Microwave system for breast tumor detection," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 470-472, 1999.        Google Scholar

11. Fear, E. C. and M. A. Stuchl, "Microwave detection of breast cancer," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1854-1863, 2000.        Google Scholar

12. Pagliari, D. J., A. PulimenoVacca, J. A. Tobon, F. Vipiana, M. R. Casu, and L. P. Carloni, "A low-cost, fast, and accurate microwave imaging system for breast cancer detection," IEEE Biomedical Circuits and Systems Conference (BioCAS), 1-4, 2015.        Google Scholar

13. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. A. S. A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Transactions on Biomedical Engineering, Vol. 35, No. 4, 257-263, 1988.        Google Scholar

14. Grzegorczyk, T. M., P. M. Meaney, P. A. Kaufman, and K. D. Paulsen, "Fast 3-D tomographic microwave imaging for breast cancer detection," IEEE Transactions on Medical Imaging, Vol. 31, No. 8, 1584-1592, 2012.        Google Scholar

15. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection?," IEEE Potentials, Vol. 22, No. 1, 12-18, 2003.        Google Scholar

16. Nilavalan, R., J. Leendertz, I. J. Craddock, A. Preece, and R. Benjamin, "Numerical analysis of microwave detection of breast tumours using synthetic focussing techniques," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 2440-2443, 2004.        Google Scholar

17. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, No. 10, 2637, 2007.        Google Scholar

18. Moosazadeh, M. and S. Kharkovsky, "Design of ultra-wideband antipodal Vivaldi antenna for microwave imaging applications," IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 1-4, 2015.        Google Scholar

19. Ruvio, G., M. J. Ammann, M. John, R. Solimene, A. D'Alterio, and R. Pierri, "UWB breast cancer detection with numerical phantom and Vivaldi antenna," IEEE International Conference on Ultra-Wideband (ICUWB), 8-11, 2011.        Google Scholar

20. Afifi, A. I., A. B. Abdel-Rahman, A. Allam, and A. A. El-Hameed, "A compact ultra-wideband monopole antenna for breast cancer detection," IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), 1-4, 2016.        Google Scholar

21. Molaei, A., M. Kaboli, S. A. Mirtaheri, and M. S. Abrishamian, "Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 14, 1137-1142, 2014.        Google Scholar

22. Bahrami, H., E. Porter, A. Santonelli, B. Gosselin, M. Popovic, and L. A. Rusch, "Flexible sixteen monopole antenna array for microwave breast cancer detection," 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3775-3778, 2014.        Google Scholar

23. Islam, M. M., M. T. Islam, M. Samsuzzaman, M. R. I. Faruque, and N. Misran, "Microstrip line-fed fractal antenna with a high fidelity factor for UWB imaging applications," Microwave and Optical Technology Letters, Vol. 57, No. 11, 2580-2585, 2015.        Google Scholar

24. Zehforoosh, Y., M. Naser-Moghadasi, S. Ra, and C. Ghobadi, "Miniature monopole fractal antenna with inscribed arrowhead cuts for UWB applications," IEICE Electronics Express, Vol. 9, No. 24, 1855-1860, 2012.        Google Scholar

25. Naser-Moghadasi, M., R. A. Sadeghzadeh, T. Aribi, T. Sedghi, and B. S. Virdee, "UWB monopole microstrip antenna using fractal tree unit-cells," Microwave and Optical Technology Letters, Vol. 54, No. 10, 2366-2370, 2012.        Google Scholar

26. Tripathi, S., A. Mohan, and S. Yadav, "Ultra-wideband antenna using Minkowski-like fractal geometry," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2273-2279, 2014.        Google Scholar

27. Abbosh, A. M., H. K. Kan, and M. E. Bialkowski, "Compact ultra-wideband planar tapered slot antenna for use in a microwave imaging system," Microwave and Optical Technology Letters, Vol. 48, No. 11, 2212-2216, 2006.        Google Scholar

28. Abbosh, A. M., "Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 690-692, 2009.        Google Scholar

29. Gibbins, D., M. Klemm, I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "A comparison of a wide-slot and a stacked patch antenna for the purpose of breast cancer detection," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 665-674, 2010.        Google Scholar

30. Islam, M. M., M. T. Islam, M. Samsuzzaman, and M. R. I. Faruque, "A negative index metamaterial antenna for UWB microwave imaging applications," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1352-1361, 2015.        Google Scholar

31. Nilavalan, R., I. J. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Wideband microstrip patch antenna design for breast cancer tumour detection," IET Microwaves, Antennas & Propagation, Vol. 1, No. 2, 277-281, 2007.        Google Scholar

32. Benjamin, R., I. J. Craddock, G. S. Hilton, S. Litobarski, E. Mc Cutcheon, R. Nilavalan, and G. N. Crisp, "Microwave detection of buried mines using non-contact, synthetic near-field focusing," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 148, No. 4, 233-240, 2001.        Google Scholar

33. Nilavalan, R., A. Gbedemah, I. J. Craddock, X. Li, and S. C. Hagness, "Numerical investigation of breast tumour detection using multi-static radar," Electronics Letters, Vol. 39, No. 25, 1787-1789, 2003.        Google Scholar

34. Nilavalan, R., I. J. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Breast cancer tumour detection using microwave radar techniques," URSI EMTS Int. Symp. on Electromag. Theory, Vol. 1, 117-119, 2004.        Google Scholar

35. Nilavalan, R., J. Leendertz, I. J. Craddock, R. Benjamin, and A. Preece, "Breast tumour detection using a flat 16 element array," EMC Zurich, 2005.        Google Scholar

36. Craddock, I. J., A. Preece, J. Leendertz, M. Klemm, R. Nilavalan, and R. Benjamin, "Development of a hemi-spherical wideband antenna array for breast cancer imaging," First European Conference on Antennas and Propagation, EuCAP, 1-5, 2006.        Google Scholar

37. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array --- Experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1692-1704, 2009.        Google Scholar

38. Klemm, M., I. J. Craddock, J. Leendertz, A. W. Preece, and R. Benjamin, "Breast cancer detection using symmetrical antenna array," The Second European Conference on Antennas and Propagation, EuCAP, 1-5, 2007.        Google Scholar

39. Craddock, I. J., M. Klemm, J. Leendertz, A. W. Preece, and R. Benjamin, "An improved hemispeherical antenna array design for breast imaging," The Second European Conference on Antennas and Propagation, EuCAP, 1-5, 2007.        Google Scholar

40. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benajmin, "Experimental and clinical results of breast cancer detection using UWB microwave radar," IEEE Antennas and Propagation Society International Symposium, AP-S, 1-4, 2008.        Google Scholar

41. Gibbins, D., M. Klemm, I. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Design of a UWB wide-slot antenna and a hemispherical array for breast imaging," 3rd European Conference on Antennas and Propagation, EuCAP, 2967-2970, 2009.        Google Scholar

42. Sze, J.-Y. and K.-L. Wong, "Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 7, 1020-1024, 2001.        Google Scholar

43. Klemm, M., J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2337-2344, 2010.        Google Scholar

44. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, D. R. Gibbins, M. Shere, and R. Benjamin, "Clinical trials of a UWB imaging radar for breast cancer," Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), 1-4, 2010.        Google Scholar

45. Klemm, M., D. Gibbins, J. Leendertz, T. Horseman, A. W. Preece, R. Benjamin, and I. J. Craddock, "Development and testing of a 60-element UWB conformal array for breast cancer imaging," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 3077-3079, 2011.        Google Scholar

46. Jalilvand, M., X. Li, L. Zwirello, and T. Zwick, "Ultra wideband compact near-field imaging system for breast cancer detection," IET Microwaves, Antennas & Propagation, Vol. 9, No. 10, 1009-1014, 2015.        Google Scholar

47. Bahramiabarghouei, H., E. Porter, A. Santorelli, B. Gosselin, M. Popovic, and L. A. Rusch, "Flexible 16 antenna array for microwave breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 10, 2516-2525, 2015.        Google Scholar

48. Porter, E., H. Bahrami, A. Santorelli, B. Gosselin, L. A. Rusch, and M. Popovic, "A wearable microwave antenna array for time-domain breast tumor screening," IEEE Transactions on Medical Imaging, Vol. 35, No. 6, 1501-1509, 2016.        Google Scholar

49. Wang, F. and T. Arslan, "Inkjet-printed antenna on exible substrate for wearable microwave imaging applications," Antennas & Propagation Conference (LAPC), 1-4, Loughborough, 2016.        Google Scholar

50. Katbay, Z., S. Sadek, R. Lababidi, A. Perennec, and M. Le Roy, "Miniature antenna for breast tumor detection," IEEE 13th International New Circuits and Systems Conference (NEWCAS), 1-4, 2015.        Google Scholar

51. Katbay, Z., S. Sadek, M. Le Roy, R. Lababidi, A. Perennec, and P. F. Dupre, "Microstrip back-cavity Hilbert fractal antenna for experimental detection of breast tumors," IEEE Middle East Conference on Antennas and Propagation (MECAP), 1-4, 2016.        Google Scholar

52. Afyf, A., L. Bellarbi, A. Errachid, and M. A. Sennouni, "Flexible microstrip CPW sloted antenna for breast cancer detection," International Conference on Electrical and Information Technologies (ICEIT), 292-295, 2015.        Google Scholar

53. Khaleel, H. R., H. M. Al-Rizzo, and A. I. Abbosh, "Design, fabrication, and testing of flexible antennas," Advancement in Microstrip Antennas with Recent Applications, 363-383, 2013.        Google Scholar

54. Majid, H. A., M. K. Abd Rahim, and T. Masri, "Microstrip antenna's gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.        Google Scholar

55. Shrivervik, A. K., J. F. Zurcher, O. Staub, and J. R. Mosing, "PCS antenna design: The challenge of miniaturization," IEEE Antennas and propagation Magazine, Vol. 43, No. 4, 12-27, 2001.        Google Scholar

56. Latif, S., D. Flores-Tapia, S. Pistorious, and L. Shafai, "A planar ultrawideband elliptical monopole antenna with re ector for breast microwave imaging," Microwave and Optical Technology Letters, Vol. 56, No. 4, 808-813, 2014.        Google Scholar

57. Song, H., S. Kubota, X. Xiao, and T. Kikkawa, "Design of UWB antennas for breast cancer detection," International Conference on Electromagnetics in Advanced Applications (ICEAA), 321-322, 2016.        Google Scholar

58. Thior, A., A. C. Lepaga, and X. Begaud, "Low profile, directive and ultra wideband antenna on a high impedance surface," 3rd European Conference on Antennas and Propagation, EuCAP, 3222-3226, 2009.        Google Scholar

59. Hasan, K., M. El Hadidy, and H. Morsi, "Reflectarray antenna for breast cancer detection and biomedical applications," IEEE Middle East Conference on Antennas and Propagation (MECAP), 1-3, 2016.        Google Scholar

60. Bashri, M. S., T. Arslan, W. Zhou, and N. Haridas, "Wearable device for microwave head imaging," 46th European Microwave Conference (EuMC), 671-674, 2016.        Google Scholar

61. Elsherbini, A., C. Zhang, S. Lin, M. Kuhn, A. Kamel, A. E. Fathy, and H. Elhennawy, "UWB antipodal vivaldi antennas with protruded dielectric rods for higher gain, symmetric patterns and minimal phase center variations," IEEE Antennas and Propagation Society International Symposium, 1973-1976, 2007.        Google Scholar

62. Peyrot Solis, M. A., G. M. Galvan Tejada, and H. Jardon Aguilar, "State of the art in ultra-wideband antennas," 2nd International Conference on Electrical and Electronics Engineering, 101-105, 2005.        Google Scholar

63. Bai, J., S. Shi, and D. W. Prather, "Modified compact antipodal Vivaldi antenna for 4-50-GHz UWB application," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 1051-1057, 2011.        Google Scholar

64. Bhavanam, S. N. and V. Midasala, "Design of Vivaldi antenna," Proceedings of International Conference on Innovations in Electronics and Communication Engineering (ICIECE), 28-34, 2014.        Google Scholar

65. Wang, Y., A. Abbosh, and B. Henin, "Microwave breast imaging sensor using compact and directive antenna with fixed mainbeam direction," Cairo International Biomedical Engineering Conference (CIBEC), 187-190, 2012.        Google Scholar

66. Kikuta, K. and A. Hirose, "Dispersion characteristics of ultra wideband antennas and their radiation patterns," Proceedings of URSI International Symposium on Electromagnetic Theory (EMTS), 462-465, 2013.        Google Scholar

67. Gibson, P. J., "The Vivaldi aerial," 9th European IEEE Microwave Conference, 101-105, 1979.        Google Scholar

68. Zhang, H., T. Arslan, and B. Flynn, "A single antenna based microwave system for breast cancer detection: Experimental results," IEEE Antennas and Propagation Conference (LAPC), 477-481, Loughborough, 2013.        Google Scholar

69. Zhang, H., A. O. El-Rayis, N. Haridas, N. H. Noordin, A. T. Erdogan, and T. Arslan, "A smart antenna array for brain cancer detection," IEEE Antennas and Propagation Conference (LAPC), 1-4, Loughborough, 2011.        Google Scholar

70. Angel, J. J. and T. A. J. Mary, "Design of Vivaldi antenna for brain cancer detection," International Conference on IEEE Electronics and Communication Systems (ICECS), 1-4, 2014.        Google Scholar

71. Abbosh, A. M., H. K. Kan, and M. E. Blalkowski, "Design of compact directive ultra wideband antipodal antenna," Microwave and Optical Technology Letters, Vol. 48, No. 12, 2448-2450, 2006.        Google Scholar

72. Abbosh, A. M., H. K. Kan, and M. E. Bialkowski, "Compact ultra-wideband planar tapered slot antenna for use in a microwave imaging system," Microwave and Optical Technology Letters, Vol. 48, No. 10, 2212-2216, 2006.        Google Scholar

73. Abbosh, A. M., "Directive antenna for ultrawideband medical imaging systems," International Journal of Antennas and Propagation, Vol. 2008, 6 pages, Article ID 854012, 2008.        Google Scholar

74. Beada'a, J. M., A. M. Abbosh, S. Mustafa, and D. Ireland, "Microwave system for head imaging," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 1, 117-123, 2014.        Google Scholar

75. Langley, J. D. S., P. S. Hall, and P. Newham, "Novel ultrawide-bandwidth Vivaldi antenna with low crosspolarisation," Electronics Letters, Vol. 29, No. 23, 2004-2005, 1993.        Google Scholar

76. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna for breast cancer detection," The Second European Conference on IEEE Antennas and Propagation, EuCAP, 1-5, 2007.        Google Scholar

77. Yang, F. and A. S. Mohan, "Microwave imaging for breast cancer detection using Vivaldi antenna array," International Symposium on IEEE Antennas and Propagation (ISAP), 479-482, 2012.        Google Scholar

78. Ahsan, S., P. Kosmas, I. Sotiriou, G. Palikaras, and E. Kallos, "Balanced antipodal Vivaldi antenna array for microwave tomography," IEEE Conference on Antenna Measurements & Applications (CAMA), 1-3, 2014.        Google Scholar

79. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2318-2326, 2010.        Google Scholar

80. Ahsan, S., B. Yeboah-Akowuah, P. Kosmas, H. C. Garcia, G. Palikaras, and E. Kallos, "Balanced antipodal vivaldi antenna for microwave tomography," EAI 4th International Conference on IEEE Wireless Mobile Communication and Healthcare (Mobihealth), 316-319, 2014.        Google Scholar

81. Bah, M. H., J. Hong, D. A. Jamro, J. J. Liang, and E. A. Kponou, "Vivaldi antenna and breast phantom design for breast cancer imaging," 7th International Conference on IEEE Biomedical Engineering and Informatics (BMEI), 90-93, 2014.        Google Scholar

82. Bah, M. H., J. S. Hong, and D. A. Jamro, "UWB antenna design and implementation for microwave medical imaging applications," IEEE International Conference on Communication Software and Networks (ICCSN), 151-155, 2015.        Google Scholar

83. Mohammed, B. A. J., A. M. Abbosh, and P. Sharpe, "Planar array of corrugated tapered slot antennas for ultrawideband biomedical microwave imaging system," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, No. 1, 59-66, 2013.        Google Scholar

84. Kanjaa, M., O. E. Mrabet, M. Khalladi, and M. Essaaidi, "Exponentially tapered antipodal Vivaldi antenna for breast cancer detection," IEEE 15th Mediterranean Microwave Symposium (MMS), 1-3, 2015.        Google Scholar

85. Ba, H. C., H. Shirai, and C. D. Ngoc, "Analysis and design of antipodal Vivaldi antenna for UWB applications," IEEE Fifth International Conference on Communications and Electronics (ICCE), 391-394, 2014.        Google Scholar

86. Cao, Y., J. Lei, Y. Wei, and L. Zhu, "A compact BAVA design with corrugated edge," 3rd Asia- Paci c Conference on Antennas and Propagation (APCAP), 259-262, 2014.        Google Scholar