1. Shin, S., El cancer, https://www.aecc.es/SobreElCancer/elcancer/Paginas/Elcancer.aspx, accessed Enero, 2017.
2. Farinas-Coronado, W., Z. Paz, G. J. Orta, and E. Rodriguez-Denis, "Estudio del factor de disipacion dielectrica como herramienta diagnostica," Revista Biomdica, Vol. 13, No. 4, 249-255, 2002. Google Scholar
3. Fass, L., "Imaging and cancer: A review," Molecular Oncology, Vol. 2, No. 2, 115-152, 2008. Google Scholar
4. Gallego, A. R., "Riesgos derivados de la exposicion a dosis bajas de radiacion ionizante," Revista de Salud Ambiental, Vol. 10, No. 1-2, 43-48, 2010. Google Scholar
5. Nunez, M., "Efectos biologicos de las radiaciones-dosimetra," Escuela Universitaria de Tecnologia Medica UdelaR Comite de Tecnologos de ALASBIMN, Montevideo, Uruguay, 2008. Google Scholar
6. Roldan, T., V. Aramburu, G. Leguizamon, and C. Hoffmann, "Efectos Biologicos de las radiaciones Ionizantes," Ciencia, Vol. 1, No. 1, 321-330, 2003. Google Scholar
7. Real Gallego, A., "Efectos biologicos de las radiaciones ionizantes," Master de Fisica Biomedica, Vol. Facultad CC, Fisicas-UCM, 2014. Google Scholar
8. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, No. 12, 1470-1479, 1998. Google Scholar
9. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 783-791, 1999. Google Scholar
10. Fear, E. C. and M. A. Stuchly, "Microwave system for breast tumor detection," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 470-472, 1999. Google Scholar
11. Fear, E. C. and M. A. Stuchl, "Microwave detection of breast cancer," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1854-1863, 2000. Google Scholar
12. Pagliari, D. J., A. PulimenoVacca, J. A. Tobon, F. Vipiana, M. R. Casu, and L. P. Carloni, "A low-cost, fast, and accurate microwave imaging system for breast cancer detection," IEEE Biomedical Circuits and Systems Conference (BioCAS), 1-4, 2015. Google Scholar
13. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. A. S. A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Transactions on Biomedical Engineering, Vol. 35, No. 4, 257-263, 1988. Google Scholar
14. Grzegorczyk, T. M., P. M. Meaney, P. A. Kaufman, and K. D. Paulsen, "Fast 3-D tomographic microwave imaging for breast cancer detection," IEEE Transactions on Medical Imaging, Vol. 31, No. 8, 1584-1592, 2012. Google Scholar
15. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection?," IEEE Potentials, Vol. 22, No. 1, 12-18, 2003. Google Scholar
16. Nilavalan, R., J. Leendertz, I. J. Craddock, A. Preece, and R. Benjamin, "Numerical analysis of microwave detection of breast tumours using synthetic focussing techniques," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 2440-2443, 2004. Google Scholar
17. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, No. 10, 2637, 2007. Google Scholar
18. Moosazadeh, M. and S. Kharkovsky, "Design of ultra-wideband antipodal Vivaldi antenna for microwave imaging applications," IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 1-4, 2015. Google Scholar
19. Ruvio, G., M. J. Ammann, M. John, R. Solimene, A. D'Alterio, and R. Pierri, "UWB breast cancer detection with numerical phantom and Vivaldi antenna," IEEE International Conference on Ultra-Wideband (ICUWB), 8-11, 2011. Google Scholar
20. Afifi, A. I., A. B. Abdel-Rahman, A. Allam, and A. A. El-Hameed, "A compact ultra-wideband monopole antenna for breast cancer detection," IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), 1-4, 2016. Google Scholar
21. Molaei, A., M. Kaboli, S. A. Mirtaheri, and M. S. Abrishamian, "Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 14, 1137-1142, 2014. Google Scholar
22. Bahrami, H., E. Porter, A. Santonelli, B. Gosselin, M. Popovic, and L. A. Rusch, "Flexible sixteen monopole antenna array for microwave breast cancer detection," 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3775-3778, 2014. Google Scholar
23. Islam, M. M., M. T. Islam, M. Samsuzzaman, M. R. I. Faruque, and N. Misran, "Microstrip line-fed fractal antenna with a high fidelity factor for UWB imaging applications," Microwave and Optical Technology Letters, Vol. 57, No. 11, 2580-2585, 2015. Google Scholar
24. Zehforoosh, Y., M. Naser-Moghadasi, S. Ra, and C. Ghobadi, "Miniature monopole fractal antenna with inscribed arrowhead cuts for UWB applications," IEICE Electronics Express, Vol. 9, No. 24, 1855-1860, 2012. Google Scholar
25. Naser-Moghadasi, M., R. A. Sadeghzadeh, T. Aribi, T. Sedghi, and B. S. Virdee, "UWB monopole microstrip antenna using fractal tree unit-cells," Microwave and Optical Technology Letters, Vol. 54, No. 10, 2366-2370, 2012. Google Scholar
26. Tripathi, S., A. Mohan, and S. Yadav, "Ultra-wideband antenna using Minkowski-like fractal geometry," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2273-2279, 2014. Google Scholar
27. Abbosh, A. M., H. K. Kan, and M. E. Bialkowski, "Compact ultra-wideband planar tapered slot antenna for use in a microwave imaging system," Microwave and Optical Technology Letters, Vol. 48, No. 11, 2212-2216, 2006. Google Scholar
28. Abbosh, A. M., "Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 690-692, 2009. Google Scholar
29. Gibbins, D., M. Klemm, I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "A comparison of a wide-slot and a stacked patch antenna for the purpose of breast cancer detection," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 665-674, 2010. Google Scholar
30. Islam, M. M., M. T. Islam, M. Samsuzzaman, and M. R. I. Faruque, "A negative index metamaterial antenna for UWB microwave imaging applications," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1352-1361, 2015. Google Scholar
31. Nilavalan, R., I. J. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Wideband microstrip patch antenna design for breast cancer tumour detection," IET Microwaves, Antennas & Propagation, Vol. 1, No. 2, 277-281, 2007. Google Scholar
32. Benjamin, R., I. J. Craddock, G. S. Hilton, S. Litobarski, E. Mc Cutcheon, R. Nilavalan, and G. N. Crisp, "Microwave detection of buried mines using non-contact, synthetic near-field focusing," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 148, No. 4, 233-240, 2001. Google Scholar
33. Nilavalan, R., A. Gbedemah, I. J. Craddock, X. Li, and S. C. Hagness, "Numerical investigation of breast tumour detection using multi-static radar," Electronics Letters, Vol. 39, No. 25, 1787-1789, 2003. Google Scholar
34. Nilavalan, R., I. J. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Breast cancer tumour detection using microwave radar techniques," URSI EMTS Int. Symp. on Electromag. Theory, Vol. 1, 117-119, 2004. Google Scholar
35. Nilavalan, R., J. Leendertz, I. J. Craddock, R. Benjamin, and A. Preece, "Breast tumour detection using a flat 16 element array," EMC Zurich, 2005. Google Scholar
36. Craddock, I. J., A. Preece, J. Leendertz, M. Klemm, R. Nilavalan, and R. Benjamin, "Development of a hemi-spherical wideband antenna array for breast cancer imaging," First European Conference on Antennas and Propagation, EuCAP, 1-5, 2006. Google Scholar
37. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array --- Experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1692-1704, 2009. Google Scholar
38. Klemm, M., I. J. Craddock, J. Leendertz, A. W. Preece, and R. Benjamin, "Breast cancer detection using symmetrical antenna array," The Second European Conference on Antennas and Propagation, EuCAP, 1-5, 2007. Google Scholar
39. Craddock, I. J., M. Klemm, J. Leendertz, A. W. Preece, and R. Benjamin, "An improved hemispeherical antenna array design for breast imaging," The Second European Conference on Antennas and Propagation, EuCAP, 1-5, 2007. Google Scholar
40. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benajmin, "Experimental and clinical results of breast cancer detection using UWB microwave radar," IEEE Antennas and Propagation Society International Symposium, AP-S, 1-4, 2008. Google Scholar
41. Gibbins, D., M. Klemm, I. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Design of a UWB wide-slot antenna and a hemispherical array for breast imaging," 3rd European Conference on Antennas and Propagation, EuCAP, 2967-2970, 2009. Google Scholar
42. Sze, J.-Y. and K.-L. Wong, "Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 7, 1020-1024, 2001. Google Scholar
43. Klemm, M., J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2337-2344, 2010. Google Scholar
44. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, D. R. Gibbins, M. Shere, and R. Benjamin, "Clinical trials of a UWB imaging radar for breast cancer," Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), 1-4, 2010. Google Scholar
45. Klemm, M., D. Gibbins, J. Leendertz, T. Horseman, A. W. Preece, R. Benjamin, and I. J. Craddock, "Development and testing of a 60-element UWB conformal array for breast cancer imaging," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 3077-3079, 2011. Google Scholar
46. Jalilvand, M., X. Li, L. Zwirello, and T. Zwick, "Ultra wideband compact near-field imaging system for breast cancer detection," IET Microwaves, Antennas & Propagation, Vol. 9, No. 10, 1009-1014, 2015. Google Scholar
47. Bahramiabarghouei, H., E. Porter, A. Santorelli, B. Gosselin, M. Popovic, and L. A. Rusch, "Flexible 16 antenna array for microwave breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 10, 2516-2525, 2015. Google Scholar
48. Porter, E., H. Bahrami, A. Santorelli, B. Gosselin, L. A. Rusch, and M. Popovic, "A wearable microwave antenna array for time-domain breast tumor screening," IEEE Transactions on Medical Imaging, Vol. 35, No. 6, 1501-1509, 2016. Google Scholar
49. Wang, F. and T. Arslan, "Inkjet-printed antenna on exible substrate for wearable microwave imaging applications," Antennas & Propagation Conference (LAPC), 1-4, Loughborough, 2016. Google Scholar
50. Katbay, Z., S. Sadek, R. Lababidi, A. Perennec, and M. Le Roy, "Miniature antenna for breast tumor detection," IEEE 13th International New Circuits and Systems Conference (NEWCAS), 1-4, 2015. Google Scholar
51. Katbay, Z., S. Sadek, M. Le Roy, R. Lababidi, A. Perennec, and P. F. Dupre, "Microstrip back-cavity Hilbert fractal antenna for experimental detection of breast tumors," IEEE Middle East Conference on Antennas and Propagation (MECAP), 1-4, 2016. Google Scholar
52. Afyf, A., L. Bellarbi, A. Errachid, and M. A. Sennouni, "Flexible microstrip CPW sloted antenna for breast cancer detection," International Conference on Electrical and Information Technologies (ICEIT), 292-295, 2015. Google Scholar
53. Khaleel, H. R., H. M. Al-Rizzo, and A. I. Abbosh, "Design, fabrication, and testing of flexible antennas," Advancement in Microstrip Antennas with Recent Applications, 363-383, 2013. Google Scholar
54. Majid, H. A., M. K. Abd Rahim, and T. Masri, "Microstrip antenna's gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009. Google Scholar
55. Shrivervik, A. K., J. F. Zurcher, O. Staub, and J. R. Mosing, "PCS antenna design: The challenge of miniaturization," IEEE Antennas and propagation Magazine, Vol. 43, No. 4, 12-27, 2001. Google Scholar
56. Latif, S., D. Flores-Tapia, S. Pistorious, and L. Shafai, "A planar ultrawideband elliptical monopole antenna with re ector for breast microwave imaging," Microwave and Optical Technology Letters, Vol. 56, No. 4, 808-813, 2014. Google Scholar
57. Song, H., S. Kubota, X. Xiao, and T. Kikkawa, "Design of UWB antennas for breast cancer detection," International Conference on Electromagnetics in Advanced Applications (ICEAA), 321-322, 2016. Google Scholar
58. Thior, A., A. C. Lepaga, and X. Begaud, "Low profile, directive and ultra wideband antenna on a high impedance surface," 3rd European Conference on Antennas and Propagation, EuCAP, 3222-3226, 2009. Google Scholar
59. Hasan, K., M. El Hadidy, and H. Morsi, "Reflectarray antenna for breast cancer detection and biomedical applications," IEEE Middle East Conference on Antennas and Propagation (MECAP), 1-3, 2016. Google Scholar
60. Bashri, M. S., T. Arslan, W. Zhou, and N. Haridas, "Wearable device for microwave head imaging," 46th European Microwave Conference (EuMC), 671-674, 2016. Google Scholar
61. Elsherbini, A., C. Zhang, S. Lin, M. Kuhn, A. Kamel, A. E. Fathy, and H. Elhennawy, "UWB antipodal vivaldi antennas with protruded dielectric rods for higher gain, symmetric patterns and minimal phase center variations," IEEE Antennas and Propagation Society International Symposium, 1973-1976, 2007. Google Scholar
62. Peyrot Solis, M. A., G. M. Galvan Tejada, and H. Jardon Aguilar, "State of the art in ultra-wideband antennas," 2nd International Conference on Electrical and Electronics Engineering, 101-105, 2005. Google Scholar
63. Bai, J., S. Shi, and D. W. Prather, "Modified compact antipodal Vivaldi antenna for 4-50-GHz UWB application," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 1051-1057, 2011. Google Scholar
64. Bhavanam, S. N. and V. Midasala, "Design of Vivaldi antenna," Proceedings of International Conference on Innovations in Electronics and Communication Engineering (ICIECE), 28-34, 2014. Google Scholar
65. Wang, Y., A. Abbosh, and B. Henin, "Microwave breast imaging sensor using compact and directive antenna with fixed mainbeam direction," Cairo International Biomedical Engineering Conference (CIBEC), 187-190, 2012. Google Scholar
66. Kikuta, K. and A. Hirose, "Dispersion characteristics of ultra wideband antennas and their radiation patterns," Proceedings of URSI International Symposium on Electromagnetic Theory (EMTS), 462-465, 2013. Google Scholar
67. Gibson, P. J., "The Vivaldi aerial," 9th European IEEE Microwave Conference, 101-105, 1979. Google Scholar
68. Zhang, H., T. Arslan, and B. Flynn, "A single antenna based microwave system for breast cancer detection: Experimental results," IEEE Antennas and Propagation Conference (LAPC), 477-481, Loughborough, 2013. Google Scholar
69. Zhang, H., A. O. El-Rayis, N. Haridas, N. H. Noordin, A. T. Erdogan, and T. Arslan, "A smart antenna array for brain cancer detection," IEEE Antennas and Propagation Conference (LAPC), 1-4, Loughborough, 2011. Google Scholar
70. Angel, J. J. and T. A. J. Mary, "Design of Vivaldi antenna for brain cancer detection," International Conference on IEEE Electronics and Communication Systems (ICECS), 1-4, 2014. Google Scholar
71. Abbosh, A. M., H. K. Kan, and M. E. Blalkowski, "Design of compact directive ultra wideband antipodal antenna," Microwave and Optical Technology Letters, Vol. 48, No. 12, 2448-2450, 2006. Google Scholar
72. Abbosh, A. M., H. K. Kan, and M. E. Bialkowski, "Compact ultra-wideband planar tapered slot antenna for use in a microwave imaging system," Microwave and Optical Technology Letters, Vol. 48, No. 10, 2212-2216, 2006. Google Scholar
73. Abbosh, A. M., "Directive antenna for ultrawideband medical imaging systems," International Journal of Antennas and Propagation, Vol. 2008, 6 pages, Article ID 854012, 2008. Google Scholar
74. Beada'a, J. M., A. M. Abbosh, S. Mustafa, and D. Ireland, "Microwave system for head imaging," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 1, 117-123, 2014. Google Scholar
75. Langley, J. D. S., P. S. Hall, and P. Newham, "Novel ultrawide-bandwidth Vivaldi antenna with low crosspolarisation," Electronics Letters, Vol. 29, No. 23, 2004-2005, 1993. Google Scholar
76. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna for breast cancer detection," The Second European Conference on IEEE Antennas and Propagation, EuCAP, 1-5, 2007. Google Scholar
77. Yang, F. and A. S. Mohan, "Microwave imaging for breast cancer detection using Vivaldi antenna array," International Symposium on IEEE Antennas and Propagation (ISAP), 479-482, 2012. Google Scholar
78. Ahsan, S., P. Kosmas, I. Sotiriou, G. Palikaras, and E. Kallos, "Balanced antipodal Vivaldi antenna array for microwave tomography," IEEE Conference on Antenna Measurements & Applications (CAMA), 1-3, 2014. Google Scholar
79. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2318-2326, 2010. Google Scholar
80. Ahsan, S., B. Yeboah-Akowuah, P. Kosmas, H. C. Garcia, G. Palikaras, and E. Kallos, "Balanced antipodal vivaldi antenna for microwave tomography," EAI 4th International Conference on IEEE Wireless Mobile Communication and Healthcare (Mobihealth), 316-319, 2014. Google Scholar
81. Bah, M. H., J. Hong, D. A. Jamro, J. J. Liang, and E. A. Kponou, "Vivaldi antenna and breast phantom design for breast cancer imaging," 7th International Conference on IEEE Biomedical Engineering and Informatics (BMEI), 90-93, 2014. Google Scholar
82. Bah, M. H., J. S. Hong, and D. A. Jamro, "UWB antenna design and implementation for microwave medical imaging applications," IEEE International Conference on Communication Software and Networks (ICCSN), 151-155, 2015. Google Scholar
83. Mohammed, B. A. J., A. M. Abbosh, and P. Sharpe, "Planar array of corrugated tapered slot antennas for ultrawideband biomedical microwave imaging system," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, No. 1, 59-66, 2013. Google Scholar
84. Kanjaa, M., O. E. Mrabet, M. Khalladi, and M. Essaaidi, "Exponentially tapered antipodal Vivaldi antenna for breast cancer detection," IEEE 15th Mediterranean Microwave Symposium (MMS), 1-3, 2015. Google Scholar
85. Ba, H. C., H. Shirai, and C. D. Ngoc, "Analysis and design of antipodal Vivaldi antenna for UWB applications," IEEE Fifth International Conference on Communications and Electronics (ICCE), 391-394, 2014. Google Scholar
86. Cao, Y., J. Lei, Y. Wei, and L. Zhu, "A compact BAVA design with corrugated edge," 3rd Asia- Pacic Conference on Antennas and Propagation (APCAP), 259-262, 2014. Google Scholar