Vol. 78
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-08-13
Effectiveness of Modulation Formats to Nonlinear Effects in Optical Fiber Transmission Systems Under 160 GB/S Data Rate
By
Progress In Electromagnetics Research Letters, Vol. 78, 9-16, 2018
Abstract
Four wave mixing (FWM) in optical fiber is unwanted effect to an optical transmission system, which can severely limit the wavelength division multiplexing (WDM) and lower the transmission efficiency. In this work, the robustness of normal Non-Return-to-Zero (NRZ), Return-to-Zero (RZ) and Modified-Duobinary-Return-Zero modulation (MDRZ) to FWM have been evaluated. Furthermore, the system performance is evaluated with the effect of fiber length tuning and applying 160 Gb/s data rate. The findings show that the RZ modulation offers a lower FWM power of -44 dBm at 700 km fiber length than -30 and -38 dBm of NRZ and MDRZ respectively at the same fiber length. In terms of system performance at the first channel and 700 km distance, the minimum BER is observed in normal RZ modulation, equal to 1.2×10-23. It is also noticeable that if NRZ and MDRZ modulations are applied, the system performance will be quickly changed and get worse, where the BEARs are increased to 1.3×10-6 and 1.3×10-8 consecutively at same channel and parameters.
Citation
Haider J. Abd, Alaaldin H. Jaber, and Abdulrasul A. Al-Haider, "Effectiveness of Modulation Formats to Nonlinear Effects in Optical Fiber Transmission Systems Under 160 GB/S Data Rate," Progress In Electromagnetics Research Letters, Vol. 78, 9-16, 2018.
doi:10.2528/PIERL18050901
References

1. Hoshida, T., O. Vassilieva, K. Yamada, S. Choudhary, R. Pecqueur, and H. Kuwahara, "Optimal 40 Gb/s modulation formats for spectrally efficient long-haul DWDM systems," IEEE J. Lightwave Technol., Vol. 20, 1989, 2002.
doi:10.1109/JLT.2002.806761        Google Scholar

2. Hayee, M. I. and A. E. Willner, "NRZ versus RZ in 10-40-Gb/s dispersion managed WDM transmission systems," IEEE Photonics Technol. Lett., Vol. 11, 991-993, 1999.
doi:10.1109/68.775323        Google Scholar

3. Hodzik, A., B. Konrad, and K. Petemann, "Alternative modulation formatsin N 40 Gb/s WDM standard fiber RZ-transmission systems," IEEE J. Lightwave Technol., Vol. 20, 598, 2002.
doi:10.1109/50.996579        Google Scholar

4. Shahiand, S. N. and S. Kumar, "Reduction of nonlinear impairments in fiber transmission system using fiber and/or transmitter diversity," Opt. Commun., Vol. 285, 3553-3558, 2012.
doi:10.1016/j.optcom.2012.04.019        Google Scholar

5. Abed, H. J., N. M. Din, M. H. Al-Mansoori, H. A. Fadhil, and F. Abdullah, "Recent four-wave mixing suppression methods," Optik, Vol. 124, 2214-2218, 2013.
doi:10.1016/j.ijleo.2012.06.082        Google Scholar

6. Abd, H. J., M. H. Al-Mansoori, N. M. Din, F. Abdullah, and H. A. Fadhil, "Priority-based parameter optimization strategy for reducing the effects of four-wave mixing on WDM system," Optik, Vol. 125, 25, 2014.
doi:10.1016/j.ijleo.2013.06.002        Google Scholar

7. Abd, H., N. M. Din, M. H. Al-Mansoori, F. Abdullah, and H. A. Fadhil, "Four-wave mixing crosstalk suppression based on the pairing combinations of differently linear-polarized optical signals," Sci. World J., Vol. 2014, Article ID 243795, 1, 2014.        Google Scholar

8. Abd, H. J., M. H. Al-Mansoori, N. M. Din, F. Abdullah, and H. A. Fadhil, "Four-wave mixing reduction technique based on smart filter approach," International Journal of Electronics, Vol. 102, No. 6, 1056-1070, 2015.
doi:10.1080/00207217.2014.963890        Google Scholar

9. Abed, H. J., N. M. Din, M. H. Al-Mansoori, F. Abdullah, and H. A. Fadhil, "Comparison among different types of advanced modulation formats under four wave mixing effects," Ukrainian Journal of Physics, Vol. 58, No. 4, 326-334, 2013.
doi:10.15407/ujpe58.04.0326        Google Scholar

10. Abd, H. J. and M. S. Almahanna, "Suppression of nonlinear effect for high data transmission rate with a WDM using the optimization properties," Ukrainian J. of Physics, Vol. 62, 583-588, 2017.
doi:10.15407/ujpe62.07.0583        Google Scholar

11. Salim, N., H. J. Abd, A. N. Aljamal, and A. H. Jaber, "Four-wave mixing suppression method based on odd-even channels arrangement strategy," Progress In Electromagnetics Research, Vol. 66, 163-172, 2018.        Google Scholar

12. Abd, H. J., N. M. Din, M. H. Al-Mansoori, F. Abdullah, and H. A. Fadhil, "Mitigation of FWM crosstalk in WDM system using polarization interleaving technique," 2013 IEEE 4th International Conference on Photonics (ICP), 117-119, 2013.
doi:10.1109/ICP.2013.6687086        Google Scholar

13. Abed, H. J., N. M. Din, M. H. Al-Mansoori, F. Abdullah, N. Salim, and H. A. Fadhil, "A new FWM reduction technique based on damping selective wavelengths," Ukrainian Journal of Physics, Vol. 58, No. 10, 956-961, 2013.
doi:10.15407/ujpe58.10.0956        Google Scholar

14. Jabber, A. H., N. M. Din, M. H. Al-Mansoori, F. Abdullah, H. A. Fadhl, and N. Salim, "Influence of four wave mixing on modulation format performance under 100 Gb/s data rate," 2012 IEEE Student Conference on Research and Development (SCOReD), 129-133, 2012.
doi:10.1109/SCOReD.2012.6518625        Google Scholar

15. Agrawal, G. P., Nonlinear Fiber Optics, Academic Press, 2001.

16. Agrawal, G. P., Applications of Nonlinear Fiber Optics, Academic Press, 2001.

17. Hayee, M. I. and A. E. Willner, "NRZ versus RZ in 10-40-Gb/s dispersion managed WDM transmission systems," IEEE Photonics Technol. Lett., Vol. 11, 991-993, 1999.
doi:10.1109/68.775323        Google Scholar

18. Bosco, G., A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, "On the use of NRZ, RZ, and CSRZ modulation at 40Gb/s with narrow DWDM channel spacing," J. Lightwave Technol., Vol. 20, No. 9, 1694, 2002.
doi:10.1109/JLT.2002.806309        Google Scholar

19. Hodzik, A., B. Konrad, and K. Petemann, "Alternative modulation formats in N 40 Gb/s WDM standard fiber RZ-transmission systems," IEEE J. Lightwave Technol., Vol. 20, 598, 2002.
doi:10.1109/50.996579        Google Scholar

20. Dahan, D. and G. Eisenstein, "Numerical comparison between distributed and discrete amplification in a point-to-point 40-Gb/s 40-WDM-based transmission system with three different modulation formats," J. Lightwave Technol., Vol. 20, 379, 2002.
doi:10.1109/50.988986        Google Scholar

21. Kaler, R. S., A. K. Sharma, and T. S. Kamal, "Simulation results for DWDM systems with ultra-high capacity," Int. J. Fiber Integrated Opt., Vol. 21, No. 5, 2002.        Google Scholar

22. Winzer, P. J. and R.-J. Essiambre, "Advanced optical modulation formats," Proceedings of the IEEE, Vol. 94, No. 5, 952-985, May 2006.
doi:10.1109/JPROC.2006.873438        Google Scholar

23. Singh, S. and R. S. Kaler, "Simulation of DWDM signals using optimum span scheme with cascaded optimized semiconductor optical amplifiers," Optik --- Int. J. Light Electron. Opt., Vol. 118, 74-82, 2007.
doi:10.1016/j.ijleo.2006.02.002        Google Scholar

24. Inoue, K., K. Nakanishi, K. Oda, and H. Toba, "Crosstalk and power penalty due to fiber four-wave mixing in multichannel transmissions," J. Lightwave Technol., Vol. 12, 1423, 1994.
doi:10.1109/50.317531        Google Scholar

25. Singh, S. P., S. Kar, and V. K. Jain, "Performance of all-optical WDM network in presence of four-wave mixing," Optical Amplifier Noise, and Wavelength Converter Noise, Vol. 26, 79-97, 2007.        Google Scholar

26. Ema, K., M. Kuwata-Gonokami, and F. Shimizu, "All optical subTbits/s serial to parallel conversion using excitonic giant nonlinearity," Appl. Phys. Lett., Vol. 59, 2799, 1991.
doi:10.1063/1.105864        Google Scholar