Vol. 78
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-08-24
Direct Matrix Synthesis for in-Line Diplexers with Transmission Zeros Generated by Frequency Variant Couplings
By
Progress In Electromagnetics Research Letters, Vol. 78, 45-52, 2018
Abstract
This paper presents a direct matrix synthesis for in-line diplexers constructed by general Chebyshev channel filters. The finite transmission zeros of the channel filters are generated and independently controlled by a set of frequency-variant couplings (FVC) sections. The network only involves resonators cascaded one by one without any auxiliary elements (such as cross-coupled or extracted-pole structures), and this paper provides the best synthesis solution in configuration simplicity for narrowband contiguous diplexers. For the channel filters, considering both the couplings and capacitances matrices of a traditional low-pass prototype, a generalized transformation on the admittance matrix is introduced as the basis of the synthesis, which allows more than one cross-coupling to be annihilated in a single step, while generating an FVC section simultaneously. Two examples of diplexer are synthesized to show the validation of the method presented in this paper.
Citation
Yong-Liang Zhang, "Direct Matrix Synthesis for in-Line Diplexers with Transmission Zeros Generated by Frequency Variant Couplings," Progress In Electromagnetics Research Letters, Vol. 78, 45-52, 2018.
doi:10.2528/PIERL18062502
References

1. Rhodes, J. D. and R. Levy, "A generalized multiplexer theory," IEEE Trans. Microw. Theory Tech., Vol. 27, No. 2, 99-111, Feb. 1979.
doi:10.1109/TMTT.1979.1129570

2. Rhodes, J. D. and R. Levy, "Design of general manifold multiplexers," IEEE Trans. Microw. Theory Tech., Vol. 27, No. 2, 111-123, Feb. 1979.
doi:10.1109/TMTT.1979.1129571

3. Macchiarella, G. and S. Tamiazzo, "Novel approach to the synthesis of microwave diplexers," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 12, 4281-4290, Dec. 2006.
doi:10.1109/TMTT.2006.885909

4. Cameron, R., "General coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 4, 433-442, Apr. 1999.
doi:10.1109/22.754877

5. Szydlowski, L., A. Lamecki, and M. Mrozowski, "Coupled-resonator filters with frequency-dependent couplings: Coupling matrix synthesis," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 6, 312-314, Jun. 2012.
doi:10.1109/LMWC.2012.2197386

6. Tamiazzo, S. and G. Macchiarella, "An analytical technique for the synthesis of cascaded N-tuplets cross-coupled resonators microwave filters using matrix rotations," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 1693-1698, May 2005.
doi:10.1109/TMTT.2005.847065

7. Amari, S. and G. Macchiarella, "Synthesis of in-line filters with arbitrarily placed attenuation poles by using nonresonating nodes," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 10, 3075-3081, Oct. 2005.
doi:10.1109/TMTT.2005.855128

8. Macchiarella, G. and S. Tamiazzo, "Synthesis of star-junction multiplexers," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, 3732-3741, Dec. 2010.

9. Tubail, D. A. and T. F. Skaik, "Synthesis of coupled resonator-based multiplexers with generalized structures using coupling matrix optimization," Electron. Lett., Vol. 51, No. 23, 1891-1893, Nov. 2015.
doi:10.1049/el.2015.2274

10. Xia, W., "Diplexers and multiplexers design by using coupling matrix optimisation,", Ph.D. dissertation, School Electron., Elect. Syst. Eng., Univ. Birmingham, Birmingham, U.K., 2015.

11. Liu, B., H. Yang, and M. J. Lancaster, "Synthesis of coupling matrix for diplexers based on a self-adaptive differential evolution algorithm," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 2, 813-821, Feb. 2018.
doi:10.1109/TMTT.2017.2772855

12. Tamiazzo, S. and G. Macchiarella, "Synthesis of cross-coupled filters with frequency-dependent couplings," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 3, 775-782, Mar. 2017.
doi:10.1109/TMTT.2016.2633258

13. Macchiarella, G. and S. Tamiazzo, "Generation of canonical forms for multiport filtering networks," IEEE MTT-S Int. Microw. Symp. Dig., 1-3, Tampa, FL, USA, Jun. 2014.

14. Zhao, P. and K.-L. Wu, "Adaptive computer-aided tuning of coupledresonator diplexers with wire T-junction," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 10, 3856-3865, Oct. 2017.
doi:10.1109/TMTT.2017.2686852

15. Cameron, R. J., A. R. Harish, and C. J. Radcliffe, "Synthesis of advanced microwave filters without diagonal cross-couplings," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2862-2872, Dec. 2002.
doi:10.1109/TMTT.2002.805141