Vol. 78
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-08-24
Design of Miniaturized SIW Diplexers with Low Insertion Loss and High Isolation
By
Progress In Electromagnetics Research Letters, Vol. 78, 53-58, 2018
Abstract
This paper presents two novel substrate integrated waveguide (SIW) diplexers with transmission zeros placed below and above the passband. Diplexer I is based on two bandpass filters (BPFs) using eighth mode SIW (EMSIW) cavities with Rx and Tx frequencies at 3.68 GHz and 6.09 GHz. The second one is operated at 2.37 GHz and 6.04 GHz using EMSIW and thirty-second SIW (TMSIW) cavity. The diplexers are all combined through a T-junction by carefully choosing the length and width of two branches to allow each filter to match the antenna, while maintaining an open circuit at the middle band of the other. The proposed diplexers possess compact size, because of the EMSIW and TMSIW cavity. The diplexers are fabricated in SIW technology. The minimum insertion losses including SMA connectors are measured to be 1.39/1.61 dB and 0.38/0.85 dB. Meanwhile, the diplexers exhibit 37 dB and 42 dB isolations between the channels, respectively. Good agreement is achieved between simulated and measured results.
Citation
Ya-Na Yang, Guo Hui Li, Li Sun, Xiu-Guang Chen, and Xuexia Yang, "Design of Miniaturized SIW Diplexers with Low Insertion Loss and High Isolation," Progress In Electromagnetics Research Letters, Vol. 78, 53-58, 2018.
doi:10.2528/PIERL18070606
References

1. Sirci, S., J. D. Martınez, J. Vague, and V. E. Boria, "Substrate integrated waveguide diplexer based on circular triplet combline filters," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 7, 430-432, 2015.
doi:10.1109/LMWC.2015.2427516

2. Dong, Y. D. and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design," IEEE Microw. and Wireless Compon. Lett., Vol. 21, No. 1, 10-12, 2011.
doi:10.1109/LMWC.2010.2091263

3. Hong, W., B. Liu, Y. Q. Wang, Q. H. Lai, H. J. Tang, X. X. Yin, Y. D. Dong, Y. Zhang, and K.Wu, "Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," 2006 Joint 31st International Conf. on Infrared Millimeter Waves and 14th International Conf. on Teraherz Electronics, 219-219, 2006.

4. Zhang, X. J., C. Y. Ma, and F. Wang, "Design of compact dual-passband LTCC filter exploiting stacked QMSIW and EMSIW," Electronics Lett., Vol. 51, No. 12, 912-914, 2015.
doi:10.1049/el.2015.0391

5. Azad, A. R. and A. Mohan, "Sixteenth-mode substrate integrated waveguide bandpass filter loaded with complementary split-ring resonator," Electron. Lett., Vol. 53, No. 8, 546-547, 2017.
doi:10.1049/el.2016.3620

6. Yang, Y. N., G. H. Li, L. Sun, W. Yang, and X. X. Yang, "Design of compact bandpass filters using sixteenth mode and thirty-second mode SIW cavities," Progress In Electromagnetics Research Letters, Vol. 75, 61-66, 2018.
doi:10.2528/PIERL18021002

7. Li, P., H. Chu, and R. S. Chen, "Design of compact bandpass filters using quarter-mode and eighth-mode SIW cavities," IEEE Trans. Compon. Packag. Technol., Vol. 7, No. 6, 956-963, 2017.
doi:10.1109/TCPMT.2017.2677958

8. Hagag, M. F., M. A. Khater, M. D. Hickle, and D. Peroulis, "Tunable SIW cavity-based dual-mode diplexers with various single-ended and balanced ports," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 3, 1238-1248, 2018.
doi:10.1109/TMTT.2017.2777978

9. Xue, Q., J. Shi, and J. X. Chen, "Unbalanced-to-balanced and balanced-to-unbalanced diplexer with high selectivity and common-mode suppression," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 11, 2848-2855, 2011.
doi:10.1109/TMTT.2011.2165960

10. Chuang, M. L. and M. T. Wu, "Microstrip diplexer design using common T-shaped resonator," IEEE Microw. and Wireless Compon. Lett., Vol. 21, No. 11, 583-585, 2011.
doi:10.1109/LMWC.2011.2168949