Vol. 83
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-04-15
Calibration Uncertainty Evaluationof d -Dot Sensors
By
Progress In Electromagnetics Research Letters, Vol. 83, 115-122, 2019
Abstract
D-dot sensor is a type of differential sensor that is widely used in the measurement of ultra-wide band (UWB) pulse electric field. The output of the sensor needs to be integrated to rebuild the original electric field. According to the methods of integration, the measurement system based on D-dot sensor can be classified into software integral D-dot measurement (SIDM) system and hardware integral D-dot measurement (HIDM) system. For an SIDM system, the accuracy of calibration, which is influenced by the integral error of the recovery signal, unfortunately, remains an impediment to its practical application. In this paper, a calibration uncertainty evaluation method based on a standard field generating equipment of time-domain electromagnetic pulse is investigated. The level of the integral error is determined by constructing a noise model using the calibration method. In the process of modeling, the characteristics of the background noise are analyzed first. Additionally, a random signal model taking background noise into account is built, and the integral value of the background noise is derived. Moreover, the integral error model is verified by a statistical method using tested data. After modeling, the uncertainty of the equivalent area for a real D-dot sensor in a software integral system and the methods for reducing the uncertainty are illustrated according to the integral error model.
Citation
Fanghong Huang, Youjie Yan, Jin Chen, Zhen Liu, and Binwen Wang, "Calibration Uncertainty Evaluationof d -Dot Sensors," Progress In Electromagnetics Research Letters, Vol. 83, 115-122, 2019.
doi:10.2528/PIERL18100502
References

1. Liu, X., Y. Fan, G. Liu, et al. "Investigation of ultra-wide band transient electromagnetic field measurement," High Power Laser and Particle Beams, Vol. 11, No. 06, 742-746, 1999.

2. Zhu, S., B. Zhu, and Y. Fan, "Measurement system of ultra-wide spectrum electromagnetic pulse radiating field," High Power Laser and Particle Beams, Vol. 18, No. 2, 261-264, 2006.

3. Jing, X., X. Zheng, and Y. Sun, "Research on the technology of EMP measurement in time-domain," Journal of Microwaves, No. S2, 76-78, 2010.

4. Alferness, R. C., "Waveguide electropitic mosulators," IEEE Transactions on Microwave Theory and Techniques, Vol. 30, No. 8, 1121-1137, 1982.
doi:10.1109/TMTT.1982.1131213

5. Ferrero, A., "Measuring electric power quality problems and perspectives," Measurement, Vol. 41, 121-129, 2008.
doi:10.1016/j.measurement.2006.03.004

6. He, W., R. Luo, J. Wang, et al. "Principles and experiments of voltage transformer based on self-integrating D-dot probe," Proceedings of the CSEE, Vol. 34, No. 15, 2445-2451, 2014.

7. Chen, J., X. Cui, X. Liu, et al. "Ultra-wideband standard antenna for transient field measurement of short electromagnetic pulse," Proceedings of the 2013 International Symposium on Electromagnetic Compatibility, 197-202, 2013.

8. Olsen, S. L., "Asymptotic conical dipole D-dot sensor development,", AFWL-TR-75-263, 1976.

9. Wang, Q., Y. Li, and L. Shi, "Design and experimental research of D-dot probe for nuclear electromagnetic pulse measurement," High Power Laser and Particle Beams, Vol. 27, No. 11, 233-239, 2015.

10. Yao, L. J., et al. "Compensation of the offset in numerical integration of a D-dot sensor measurement," Proc. 3rd Asia-Pac Conf Antennas Propag., 898-901, 2014.

11. Yan, Y., T. Jiang, X. Liu, et al. "Traceability and uncertainty of ultra-wide band short pulse electric field standard device," High Power Laser and Particle Beams, Vol. 26, No. 6, 2014.

12. Yan, Y., T. Jiang, J. Chen, et al. "Study of the time-domain electromagnetic pulse standard field generation setup and its application," Review of Scientific Instruments, Vol. 89, 074703, 2018.
doi:10.1063/1.5027459

13. Tamas, D., "Uncertainty of signal reconstruction in the case of jittery and noisy measurement," IEEE Transactions on Instrumentation and Measurement, Vol. 47, 1062-1065, 1998.

14. Liang, Z. and X. Meng, "Study on evaluation of both time-base distortion and sampling jitter of digital storage oscilloscopes," Acta Metrological Sinica, Vol. 29, No. 4, 358-364, 2008.

15. Liang, Z. and X. Meng, "Review of sampling jitter research," Journal of Test and Measurement Technology, Vol. 23, No. 3, 253-260, 2009.

16. Zhu, J., R. Li, J. Miao, et al. "Time-based distortion correction algorithm of high-speed sampling oscilloscope," Journal of Beijing University of Technology, Vol. 39, No. 12, 1810-1814, 2013.

17. IEEE Std 1309TM-2013 "IEEE standard for calibration of electromagnetic field sensors and probes(excluding antennas) from 9 kHz to 40 GHz," IEEE Electromagnetic Compatibility Society, 2013.