Vol. 85
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-06-20
Study on EMI Analysis and Inhibitory Techniques for Switching Converter Devices
By
Progress In Electromagnetics Research Letters, Vol. 85, 59-64, 2019
Abstract
Due to the high power conversion efficiency, high efficiency and energy saving, wide voltage regulation range and light weight, switching converters are widely used in many fields such as industry, military, and medicine. However, strong electromagnetic interference can affect the normal operation of switching power supply and also has a negative impact on the external environment. Based on this phenomenon, we focus on the electromagnetic compatibility of switching power supply, and a high-frequency model for PSFB circuit is proposed. At last, a set of verification tests are conducted to verify the validity of the proposed model in this paper.
Citation
Wan Jun Yin, and Tao Wen, "Study on EMI Analysis and Inhibitory Techniques for Switching Converter Devices," Progress In Electromagnetics Research Letters, Vol. 85, 59-64, 2019.
doi:10.2528/PIERL18102203
References

1. Wang, Q., Z. An, Y. Zheng, et al. "Electromagnetic compatibility optimization design for switching power supply used in electric vehicle," Transactions of China Electrotechnical Society, Vol. 29, No. 8, 225-225, 2014.

2. Yin, W. J., et al. "Switching converter EMI conduction modelling and verification," Electronics Letters, Vol. 5, 587-589, 2019.
doi:10.1049/el.2019.0050

3. Grobler, G., "Low cost power lead extended precompliance conducted EMI measurement setup and diagnostics with compact LISN," IEEE ECCE Asia Down Under, 1144-1149, Melbourne, 2013.

4. Zhou, Y., Y. Zhu, Q. Song, et al. "Prediction and reduction of electromagnetic conducted emission in active clamp forward converter," IEEE Electromagnetic Compatibility (EMC), 729-733, 2011.

5. Rondon-Pinilla, E., F. Morel, C. Vollaire, et al. "Modelling of a buck converter with a SiC JFET to predict EMC conducted emissions," IEEE Trans. Power Electron., Vol. 29, No. 5, 2246-2260, 2014.
doi:10.1109/TPEL.2013.2295053

6. Gong, X. and J. A. Ferreira, "Extracting the parameters of a common-mode EM equivalent circuit model for a drive inverter," Power Electronics Conf. (IPEC), 892-899, Sapporo, 2010.

7. Li, L., B. Xu, N. Bondarenko, et al. "A measurement based model of the electromagnetic emissions from a power inverter," IEEE Trans. Power Electron., Vol. 99, 1-10, 2013.

8. Cataliotti, A., D. Di Cara, G. Marsala, et al. "High frequency experimental characterization and modeling of six pack IGBT’s power modules," IEEE Trans. Ind. Elctron., Vol. 63, No. 10, 6664-6673, 2016.
doi:10.1109/TIE.2016.2585082

9. Slama, J. B. H. and M. Tlig, "Effect of the MOSFET choice on conducted EMI in power converter circuits," IEEE Electrotechnical Conf. Mediterranean, 610-613, Tunisia, 2012.

10. Niu, H.-L., "A measurement technology of time-domain EMI based on oscilloscope," Electronic Design Engineering, Vol. 25, No. 6, 99-102, 2017.

11. Grobler, I. and M. N. Gitau, "Modelling and measurement of high frequency conducted electromagnetic interference in DC/DC converters," IET Science, Measurement & Technology, Vol. 5, No. 15, 495-503, 2017.
doi:10.1049/iet-smt.2016.0412

12. Kempski, S., "Decomposition of EMI noiseinto common and differential modes in PWM inverter drive systems," J. Electr. Quality Utilisation, Vol. 7, No. 1, 53-58, 2006.

13. De Beer, A. S., G. N. Wooding, et al. "Problematic aspects when using a LISN for converter EMI characterisation," IEEE Int. Conf. on Industrial Technology, 633-637, Cape Town, 2013.

14. Caponet, M. C., F. Profumo, and L. Ferraris, "Common and differential-mode noise separation: Comparison of two different approaches," Power Electronics Specialists Conf., Vol. 3, 1383-1388, Vancouver, 2001.