Vol. 83
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-27
A Miniaturized TM21 Mode Circular Microstrip Patch Antenna
By
Progress In Electromagnetics Research Letters, Vol. 83, 45-50, 2019
Abstract
A miniaturized TM21 mode circular patch antenna is introduced. The miniaturization is realized by loading the patch with four symmetric radial slits, which facilitate elongating the current path and thus reducing the resonant frequency and the patch size. In particular, the eigenvalue of the proposed higher order mode is reduced to that of a conventional dominant TM11 mode antenna, resulting in about 40% reduction in the radius. The effects of the slit geometry on miniaturization and resonant frequency are studied. The measurement results are also presented, which are in good agreement with the simulation ones. Such miniaturized TM21 patch antennas with conical radiation patterns have manifold applications in phased array antennas for booming communication demands.
Citation
Saininad Naik, and Maria Pour, "A Miniaturized TM21 Mode Circular Microstrip Patch Antenna," Progress In Electromagnetics Research Letters, Vol. 83, 45-50, 2019.
doi:10.2528/PIERL19020303
References

1. Huang, J., "Circularly polarized conical patterns from circular microstrip antennas," IEEE Trans. Antennas Propag., Vol. 32, No. 9, 991-994, Sept. 1984.
doi:10.1109/TAP.1984.1143455

2. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 1995.

3. Ravipati, C. B., D. R. Jackson, and H. Xu, "Center-fed microstrip antennas with shorting vias for miniaturization," IEEE Antennas and Propagation Society International Symposium, Vol. 3b, July 2005.

4. Ikonen, P. M. T., K. N. Rozanov, A. V. Osipov, P. Alitalo, and S. A. Tretyakov, "Magnetodielectric substrates in antenna miniaturization potential and limitations," IEEE Trans. Antennas Propag., Vol. 54, No. 11, 3391-3399, 2006.
doi:10.1109/TAP.2006.884303

5. Wang, D., H. Wong, and C. H. Chan, "Small patch antennas incorporated with a substrate integrated irregular ground," IEEE Trans. Antennas Propag., Vol. 60, No. 7, 3096-3103, July 2012.
doi:10.1109/TAP.2012.2196915

6. Luk, K., R. Chair, and K.-F. Lee, "Small rectangular patch antenna," Electron. Lett., Vol. 34, No. 25, 2366-2367, 1998.
doi:10.1049/el:19981643

7. Wong, K. L., C. L. Tang, and H. T. Chen, "A compact meandered circular microstrip antenna with a shorting pin," Microwave Opt. Technol. Lett., Vol. 15, 147-149, June 20, 1997.

8. Lai, H. W., P. Li, and K. M. Luk, "Wideband small patch antenna," Electron. Lett., Vol. 39, No. 8, 641-642, 2003.
doi:10.1049/el:20030417

9. Wong, M. L., H. Wong, and K. M. Luk, "Small circularly polarised patch antenna," Electron. Lett., Vol. 41, No. 16, 7-8, 2005.
doi:10.1049/el:20051513

10. Sun, L., B.-H. Sun, Q. Sun, and W. Huang, "Miniaturized annular ring slot antenna for small/mini UAV applications," Progress In Electromagnetics Research C, Vol. 54, 1-7, 2014.
doi:10.2528/PIERC14090302

11. Olaode, O. O. and W. D. Palmer, "Effects of meandering on dipole antenna resonant frequency," IEEE Antennas Wireless Propag. Lett., Vol. 11, 122-125, January 2012.
doi:10.1109/LAWP.2012.2184255

12. Rogers Corporation "RT/duroid 5870/5880 High Frequency Laminates,", 5870/5880 datasheet, [Revised June 2017].

13. High Frequency Structure Simulator (HFSS 18.0), Canonsburg, , PA, Boston, MA: ANSYS, [Online], Available: http://www.ansoft.com/products/hf/hfss.