Vol. 83
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-22
Interaction of a Sine Wave with an Artificial Negative Permittivity Medium Using Nonstandard FDTD
By
Progress In Electromagnetics Research Letters, Vol. 83, 1-5, 2019
Abstract
This paper presents the realization of Nonstandard Finite Difference Time Domain (NS-FDTD) analysis having high accuracy and low computational cost to a negative permittivity metamaterial wire medium for the first time. A sine wave of frequency less than that of plasma frequency of the medium which is in the shape of a slab reflector is allowed to interact after identifying the exact values of the required stability condition of the NS-FDTD. The electric field distribution around the plasma slab obtained for a particular excitation point using NS-FDTD and standard FDTD are demonstrated which show obvious advantages of this high accuracy algorithm. This novel technique may be further extended to various dispersive and metamaterial structures.
Citation
Jovia Jose, Sikha Kolamkanny Simon, Joe Kizhakooden, Anju Sebastian, Sreedevi P. Chakyar, Nees Paul, Cherala Bindu, Jolly Andrews, and Vallikkavumkal Paily Joseph, "Interaction of a Sine Wave with an Artificial Negative Permittivity Medium Using Nonstandard FDTD," Progress In Electromagnetics Research Letters, Vol. 83, 1-5, 2019.
doi:10.2528/PIERL19021503
References

1. Cole, J. B., "High accuracy solution of Maxwell’s equations using nonstandard finite differences," Computers in Physics, Vol. 11, No. 3, 287-292, 1997.
doi:10.1063/1.168620

2. Cole, J. B., "Generalized nonstandard finite differences and physical applications," Computers in Physics, Vol. 12, No. 1, 82-87, 1998.
doi:10.1063/1.168639

3. Ohtani, T., K. Taguchi, T. Kashiwa, Y. Kanai, and J. B. Cole, "Nonstandard fdtd method for multifrequency analysis," IEEE Transactions on Magnetics, Vol. 44, No. 6, 1390-1393, 2008.
doi:10.1109/TMAG.2007.916228

4. Ohtani, T., K. Taguchi, T. Kashiwa, Y. Kanai, and J. B. Cole, "Nonstandard fdtd method for wideband analysis," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2386-2396, 2009.
doi:10.1109/TAP.2009.2024467

5. Ohtani, T., K. Murakami, K. Taguchi, and T. Kashiwa, "Complex nonstandard FDTD method for dispersive media," 11th International Symposium on IEEE Antennas Technology and Applied Electromagnetics [ANTEM 2005], 1-4, 2005.

6. Jerez, S. and A. Lara, "A high resolution nonstandard fdtd method for the TM mode of Maxwell’s equations," Mathematical and Computer Modelling, Vol. 54, No. 7-8, 1852-1857, 2011.
doi:10.1016/j.mcm.2010.12.003

7. Cole, J. B., "High-accuracy Yee algorithm based on nonstandard finite differences: New developments and verifications," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1185-1191, 2002.
doi:10.1109/TAP.2002.801268

8. Cole, J. B., "High-accuracy FDTD solution of the absorbing wave equation, and conducting Maxwell’s equations based on a nonstandard finite-difference model," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, 725-729, 2004.
doi:10.1109/TAP.2004.823874

9. Pendry, J. B., A. Holden, D. Robbins, and W. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, Vol. 10, No. 22, 4785, 1998.
doi:10.1088/0953-8984/10/22/007