Vol. 85
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-06-18
Non-Crosstalk Scheme Based on Linear Combination Transformation in High-Speed Interconnects
By
Progress In Electromagnetics Research Letters, Vol. 85, 45-50, 2019
Abstract
Aiming at the problem of crosstalk in high-speed interconnects, a non-crosstalk scheme based on coupled transmission lines-channel transmission matrix (CTL-CTM) is proposed. In this scheme, the transmitted signals are linear combination transformed at the transmitting end of the interconnect lines where the transmission signals among the interconnect lines constitute an orthogonal mode. After the signals have synchronously transmitted to the receiving end, second linear combination transformation is performed to restore the transmitted signals. Simulation results show that this low cost circuit proposed is capable of improving the quality of eye diagram and eliminating the crosstalk obviously.
Citation
Yafei Wang, Huifang Sun, and Xuehua Li, "Non-Crosstalk Scheme Based on Linear Combination Transformation in High-Speed Interconnects," Progress In Electromagnetics Research Letters, Vol. 85, 45-50, 2019.
doi:10.2528/PIERL19030502
References

1. Fan, J., X. Ye, J. Kim, et al. "Signal integrity design for high-speed digital circuits: Progress and directions," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 2, 392-400, 2010.
doi:10.1109/TEMC.2010.2045381

2. Bogatin, E., Signal and Power Integrity --- Simplified, Prentice Hall, New Jersey, 2009.

3. Halligan, M. and D. Beetner, "Maximum crosstalk estimation in weakly coupled transmission lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 3, 736-743, 2014.
doi:10.1109/TEMC.2014.2304735

4. Lee, K., H. Jung, H.-J. Chi, et al. "Serpentine microstrip line with zero far-end crosstalk for parallel high-speed DRAM interfaces," IEEE Transactions on Advanced Packaging, Vol. 33, No. 2, 552-558, 2010.
doi:10.1109/TADVP.2009.2033938

5. Wu, B. and T. Mo, "Barbed transmission lines for crosstalk suppression," Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 621-624, Singapore, May 21-24, 2012.

6. Refaie, M. I., W. S. El-Deeb, and M. I. Abdalla, "A study of using graphene coated microstrip lines for crosstalk reduction at radio frequency," Proceedings of the 35th National Radio Science Conference (NRSC), 85-90, Cairo, Egypt, March 20-22, 2018.

7. Xu, J. and S. Wang, "Investigating a guard trace ring to suppress the crosstalk due to a clock trace on a power electronics DSP control board," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 3, 546-554, 2015.
doi:10.1109/TEMC.2015.2403289

8. Huang, B., K. Che, and C. Wang, "Far-end crosstalk noise reduction using decoupling capacitor," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 1, 1-13, 2016.
doi:10.1109/TEMC.2016.2515855

9. Balakrishnan, R., S. A. Thomas, and S. Sharan, "Crosstalk and EMI reduction using enhanced guard trace technique," 2018 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 1-3, Chandigarh, India, December 16-18, 2018.

10. Pizano-Escalante, L., O. Longoria-Gandara, and R. Parra-Michel, "Crosstalk cancellation on high-speed interconnects through a MIMO linear precoding," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 11, 3860-3870, 2013.
doi:10.1109/TMTT.2013.2283845

11. Cevrero, A., C. Aprile, P. A. Francese, et al. "A 5.9 mW/Gb/s 7 Gb/s/pin 8-lane single-ended RX with crosstalk cancellation scheme using a XCTLE and 56-tap XDFE in 32 nm SOI CMOS," Proceedings of the Symposium on VLSI Circuits, C228-C229, Kyoto, Japan, June 16-19, 2015.

12. Oh, T. and R. Harjani, "Adaptive techniques for joint optimization of XTC and DFE loop gain in high-speed I/O," ETRI Journal, Vol. 37, No. 5, 906-916, 2015.
doi:10.4218/etrij.15.0114.0306

13. Aprile, C., A. Cevrero, P. A. Francese, et al. "An eight-lane 7-Gb/s/pin source synchronous single-ended RX with equalization and far-end crosstalk cancellation for backplane channels," IEEE Journal of Solid-State Circuits, Vol. 53, No. 3, 861-872, 2018.
doi:10.1109/JSSC.2017.2783679

14. Wang, Y. and X. Li, "Crosstalk cancellation method based on unitary transformation of coupled transmission lines-channel transmission matrix," Progress In Electromagnetics Research Letters, Vol. 52, 45-50, 2015.
doi:10.2528/PIERL15011602

15. Mbairi, F. D., W. P. Siebert, and H. Hesselbom, "High-frequency transmission lines crosstalk reduction using spacing rules," IEEE Transactions on Components and Packaging Technologies, Vol. 31, No. 3, 601-610, 2008.
doi:10.1109/TCAPT.2008.2001163