Vol. 85
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-06-27
A Terahertz Quarter Wave Plate Based on Staggered Split Ring Resonators
By
Progress In Electromagnetics Research Letters, Vol. 85, 117-123, 2019
Abstract
In this paper, we propose a transmissive quarter wave plate (QWP) which can provide linear-to-circular polarization conversion in terahertz (THz). The structure is composed of one dielectric layer with staggered split ring resonators (SSRRs) on both sides. The simulation results show that the proposed structure can offer a nearly pure left circularly polarized wave with 3 dB axial ratio bandwidth of 0.337 THz; meanwhile, the bandwidth of polarization conversion efficiency beyond 80% reaches 0.170 THz. Additionally, the distributions of surface currents and electric field are discussed to explain the physical mechanism of the proposed structure. The linear-to-circular polarization conversion can be attributed to the inductance effect and capacitance effect between SSRRs. Finally, we validate the performance of the proposed THz-QWP. Such a device could potentially be used in THz communications, THz imaging, and THz sensing.
Citation
Wu Pan, Xinyu Ren, and Qi Chen, "A Terahertz Quarter Wave Plate Based on Staggered Split Ring Resonators," Progress In Electromagnetics Research Letters, Vol. 85, 117-123, 2019.
doi:10.2528/PIERL19031502
References

1. Nouman, M. T., J. H. Hwang, M. Faiyaz, et al. "Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control," Optics Express, Vol. 26, No. 10, 12922-12929, 2018.

2. Wang, D., L. Zhang, Y. Gu, et al. "Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface," Scientific Reports, Vol. 5, 15020, 2015.

3. Strikwerda, A. C., K. Fan, H. Tao, et al. "Comparison of birefringent electric split-ring resonator and meander-line structures as quarter-wave plates at terahertz frequencies," Optics Express, Vol. 17, No. 1, 136-149, 2009.

4. Zhang, Z., X. Cao, J. Gao, et al. "Polarization-dependent multi-functional metamaterial as polarization filter, transparent wall and circular polarizer using ring-cross resonator," Radio Engineering, Vol. 26, No. 3, 705-712, 2017.

5. Cheng, Z. and Y. Cheng, "A multi-functional polarization convertor based on chiral metamaterial for terahertz waves," Optics Communications, Vol. 435, 178-182, 2019.

6. Mangi, F. A., S. Xiao, Z. Yao, et al. "Double-layer broadband circular polarizer based on fission transmission of linear polarization for ku-band applications," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2680-2685, 2017.

7. Young, L., L. Robinson, and C. Hacking, "Meander-line polarizer," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 3, 376-378, 1973.

8. He, J., Z. Xie, S. Wang, et al. "Terahertz polarization modulator based on metasurface," Journal of Optics, Vol. 17, No. 10, 105107, 2015.

9. Akgol, O., O. Altintas, E. Unal, et al. "Linear to left- and right-hand circular polarization conversion by using a metasurface structure," International Journal of Micro-wave and Wireless Technologies, Vol. 10, No. 1, 133-138, 2018.

10. Wang, D., Y. Gu, Y. Gong, et al. "An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface," Optics Express, Vol. 23, No. 9, 11114-11122, 2015.

11. Zhu, L., L. Dong, J. Guo, et al. "Polarization conversion based on mie-type Electromagnetically Induced Transparency (EIT) effect in all-dielectric metasurface ," Plasmonics, Vol. 13, No. 6, 1971-1976, 2018.

12. Han, Z., S. Ohno, Y. Tokizane, et al. "Off-resonance and in-resonance metamaterial design for a high-transmission terahertz-wave quarter-wave plate," Optics Letters, Vol. 43, No. 12, 2977-2980, 2018.

13. Zang, X., S. Liu, H. Gong, et al. "Dual-band superposition induced broadband terahertz linear-to-circular polarization converter," Journal of the Optical Society of America B, Vol. 35, No. 4, 950-957, 2018.