Vol. 86
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-07-15
A General ADE -FDTD with Crank-Nicolson Scheme for the Simulation of Dispersive Structures
By
Progress In Electromagnetics Research Letters, Vol. 86, 1-6, 2019
Abstract
A general auxiliary differential equation (ADE) finite difference time-domain (FDTD) method with Crank-Nicolson (CN) scheme is proposed to model electromagnetic wave propagation in dispersive materials in this paper. The proposed method introduces an ADE technique that establishes the relationship between the electric displacement vector and electric field intensity with a differential equation in dispersive media. The CN scheme applies only to Faraday's law, resulting in reduced memory usage and computing time. To validate the advantages of the proposed approach, two examples with plane wave propagation in dispersive media are calculated. Compared with the conventional ADE-CN-FDTD method, the results from our proposed method show its accuracy and efficiency for dispersive media simulation.
Citation
Shi-Yu Long, Wei-Jun Chen, Qi-Wen Liang, and Min Zhao, "A General ADE -FDTD with Crank-Nicolson Scheme for the Simulation of Dispersive Structures," Progress In Electromagnetics Research Letters, Vol. 86, 1-6, 2019.
doi:10.2528/PIERL19040801
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Boston, MA, 2005.

2. Sun, G. and C. W. Trueman, "Approximate Crank-Nicolson schemes for the 2-D finite-difference time-domain method for TEz waves," IEEE Trans. Antennas Propag., Vol. 52, No. 10, 589-590, May 2004.

3. Sun, G. and C. W. Trueman, "Efficient implementations of the Crank-Nicolson schemes for the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2275-2284, May 2006.
doi:10.1109/TMTT.2006.873639

4. Tan, E. L., "Efficient algorithms for Crank-Nicolson-based finite-difference-time domain-methods," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 408-413, Feb. 2006.
doi:10.1109/TMTT.2007.914641

5. Sadrpour, S.-M., V. Nayyeri, M. Soleimani, and O. M. Ramahi, "A new efficient unconditionally stable finite-differnce time-domain solution of the wave equation," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 3114-3121, Jun. 2017.
doi:10.1109/TAP.2017.2694468

6. Chen, W.-J., P. Ma, and J. Tian, "A novel ADE-CN-FDTD with improved computational efficiency for dispersive media," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 10, 849-851, Sep. 2018.
doi:10.1109/LMWC.2018.2861208

7. Chen, W.-J., W. Shao, and B.-Z. Wang, "ADE-Laguerre-FDTD method for wave propagation in general dispersive materials," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 5, 228-230, May 2013.
doi:10.1109/LMWC.2013.2253310

8. Rouf, H. K., F. Costen, and S. G. Garcia, "3D Crank-Nicolson finite difference time domain method for dispersive media," Electron. Lett., Vol. 45, No. 19, 961-962, Sep. 2009.
doi:10.1049/el.2009.1940