Vol. 85
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-06-17
Spreading of Four-Petal Lorentz-Gauss Beams Propagating through Atmospheric Turbulence
By
Progress In Electromagnetics Research Letters, Vol. 85, 37-43, 2019
Abstract
The analytical propagation equation of a four-petal Lorentz-Gauss (FPLG) beam propagating through atmospheric turbulence is derived, and the spreading of average intensity is analyzed by using numerical examples. It is found that the FPLG beam propagating through atmospheric turbulence will evolve into Gaussian beam due to the influences of atmospheric turbulence, and the atmospheric turbulence will accelerate the spreading of FPLG beam as the propagation distance increases. It is also found that the FPLG beam with different N or Lorentz widths propagating through atmospheric turbulence will have the same beam spot when the FPLG beam evolves into the Gaussian beam at the same propagation distance.
Citation
Shuai Chang, Yansong Song, Yan Dong, and Keyan Dong, "Spreading of Four-Petal Lorentz-Gauss Beams Propagating through Atmospheric Turbulence," Progress In Electromagnetics Research Letters, Vol. 85, 37-43, 2019.
doi:10.2528/PIERL19041902
References

1. Peleg, A. and J. V. Moloney, "Scintillation index for two Gaussian laser beams with different wavelengths in weak atmospheric turbulence ," J. Opt. Soc. Am. A Opt. Image. Sci. Vis., Vol. 23, 3114-3122, 2006.
doi:10.1364/JOSAA.23.003114

2. Ji, X. and G. Ji, "Spatial correlation properties of apertured partially coherent beams propagating through atmospheric turbulence," Applied Physics B, Vol. 92, 111-118, 2008.
doi:10.1007/s00340-008-3050-2

3. Li, X., X. Chen, and X. Ji, "Influence of atmospheric turbulence on the propagation of superimposed partially coherent Hermite-Gaussian beams," Opt. Commun., Vol. 282, 7-13, 2009.
doi:10.1016/j.optcom.2008.09.063

4. Gu, Y. L. and G. Gbur, "Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence," J. Opt. Soc. Am. A, Vol. 27, 2621-2629, 2010.
doi:10.1364/JOSAA.27.002621

5. Zhou, G. Q. and X. X. Chu, "Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere," Opt. Express, Vol. 18, 726-731, 2010.
doi:10.1364/OE.18.000726

6. Wang, K. L. and C. H. Zhao, "Propagation properties of a radial phased-locked partially coherent anomalous hollow beam array in turbulent atmosphere," Opt. Laser Technol., Vol. 57, 44-51, 2014.
doi:10.1016/j.optlastec.2013.09.037

7. Tang, M. M. and D. M. Zhao, "Regions of spreading of Gaussian array beams propagating through oceanic turbulence," Appl. Optics, Vol. 54, 3407-3411, 2015.
doi:10.1364/AO.54.003407

8. Liu, D. J., L. Chen, Y. C. Wang, and H. M. Yin, "Intensity properties of four-petal Gaussian vortex beams propagating through atmospheric turbulence," Optik, Vol. 127, 3905-3911, 2016.
doi:10.1016/j.ijleo.2016.01.024

9. Yin, X. and L. C. Zhang, "Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path," J. Opt. Soc. Am. A, Vol. 33, 1348-1352, 2016.
doi:10.1364/JOSAA.33.001348

10. Zhu, J., X. Li, H. Tang, and K. Zhu, "Propagation of multi-cosine-Laguerre-Gaussian correlated Schell-model beams in free space and atmospheric turbulence," Opt. Express, Vol. 25, 20071-20086, 2017.
doi:10.1364/OE.25.020071

11. Wang, F. and O. Korotkova, "Circularly symmetric cusped random beams in free space and atmospheric turbulence," Opt Express, Vol. 25, 5057-5067, 2017.
doi:10.1364/OE.25.005057

12. Tian, H. H., Y. G. Xu, T. Yang, Z. R. Ma, S. J. Wang, and Y. Q. Dan, "Propagation characteristics of partially coherent anomalous elliptical hollow Gaussian beam propagating through atmospheric turbulence along a slant path ," J. Mod. Optic, Vol. 64, 422-429, 2017.
doi:10.1080/09500340.2016.1241441

13. Zheng, G., G., J. Wang, L. Wang, M. Zhou, Y. Chen, and M. Song, "Scintillation analysis of pseudo-Bessel-Gaussian Schell-mode beams propagating through atmospheric turbulence with wave optics simulation," Optics & Laser Technology, Vol. 100, 139-144, 2018.
doi:10.1016/j.optlastec.2017.10.002

14. Wang, F., X. L. Liu, and Y. J. Cai, "Propagation of partially coherent beam in turbulent atmosphere: A review," Progress In Electromagnetics Research, Vol. 150, 123-143, 2015.
doi:10.2528/PIER15010802

15. Wang, F., J. Li, G. Martinez-Piedra, and O. Korotkova, "Propagation dynamics of partially coherent crescent-like optical beams in free space and turbulent atmosphere," Opt. Express, Vol. 25, 26055-26066, 2017.
doi:10.1364/OE.25.026055

16. Liu, D., G. Wang, and Y. Wang, "Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence," Optics & Laser Technology, Vol. 98, 309-317, 2018.
doi:10.1016/j.optlastec.2017.08.011

17. Liu, D. J., X. X. Luo, H. M. Yin, G. Q. Wang, and Y. C. Wang, "Effect of optical system and turbulent atmosphere on the average intensity of partially coherent flat-topped vortex hollow beam," Optik, Vol. 130, 227-236, 2017.
doi:10.1016/j.ijleo.2016.08.128

18. Banakh, V. A. and L. O. Gerasimova, "Strong scintillations of pulsed Laguerrian beams in a turbulent atmosphere," Opt. Express, Vol. 24, 19264-19277, 2016.
doi:10.1364/OE.24.019264

19. Liu, D. and Y. Wang, "Evolution properties of a radial phased-locked partially coherent Lorentz-Gauss array beam in oceanic turbulence," Optics & Laser Technology, Vol. 103, 33-41, 2018.
doi:10.1016/j.optlastec.2018.01.014

20. Golmohammady, S. and B. Ghafary, "Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere," Laser Phys., Vol. 26, 2016.
doi:10.1088/1054-660X/26/6/066201

21. Liu, D., H. Yin, G. Wang, and Y. Wang, "Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence," Appl. Optics, Vol. 56, 8785-8792, 2017.
doi:10.1364/AO.56.008785

22. Liu, D. J., Y. C. Wang, and H. M. Yin, "Propagation properties of partially coherent four-petal Gaussian vortex beams in turbulent atmosphere," Opt. Laser Technol., Vol. 78, 95-100, 2016.
doi:10.1016/j.optlastec.2015.10.004

23. Zhi, D., R. M. Tao, P. Zhou, Y. X. Ma, W. M. Wu, X. L. Wang, and L. Si, "Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence," Opt. Commun., Vol. 387, 157-165, 2017.
doi:10.1016/j.optcom.2016.11.049

24. Liu, D., H. Zhong, G. Wang, and Y. Wang, "Model of a four-petal Lorentz-Gauss beam and its paraxial propagation ," Optik, Vol. 179, 492-498, 2019.
doi:10.1016/j.ijleo.2018.10.134

25. Liu, D., G. Wang, H. Zhong, H. Yin, A. Dong, and Y. Wang, "Properties of a four-petal Lorentz-Gauss beam propagating in uniaxial crystal orthogonal to the optical axis," Optik, Vol. 183, 257-265, 2019.
doi:10.1016/j.ijleo.2019.02.136

26. El Gawhary, O. and S. Severini, "Lorentz beams and symmetry properties in paraxial optics," J. Opt. A: Pure Appl. Opt., Vol. 8, 409-414, 2006.
doi:10.1088/1464-4258/8/5/007

27. Schmidt, P., "A method for the convolution of lineshapes which involve the Lorentz distribution," Journal of Physics B, Vol. 9, 2331-2339, 1976.
doi:10.1088/0022-3700/9/13/018

28. Jeffrey, H. D. A., Handbook of Mathematical Formulas and Integrals, 4th Ed., Academic Press Inc, 2008.