1. Peleg, A. and J. V. Moloney, "Scintillation index for two Gaussian laser beams with different wavelengths in weak atmospheric turbulence ," J. Opt. Soc. Am. A Opt. Image. Sci. Vis., Vol. 23, 3114-3122, 2006.
doi:10.1364/JOSAA.23.003114 Google Scholar
2. Ji, X. and G. Ji, "Spatial correlation properties of apertured partially coherent beams propagating through atmospheric turbulence," Applied Physics B, Vol. 92, 111-118, 2008.
doi:10.1007/s00340-008-3050-2 Google Scholar
3. Li, X., X. Chen, and X. Ji, "Influence of atmospheric turbulence on the propagation of superimposed partially coherent Hermite-Gaussian beams," Opt. Commun., Vol. 282, 7-13, 2009.
doi:10.1016/j.optcom.2008.09.063 Google Scholar
4. Gu, Y. L. and G. Gbur, "Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence," J. Opt. Soc. Am. A, Vol. 27, 2621-2629, 2010.
doi:10.1364/JOSAA.27.002621 Google Scholar
5. Zhou, G. Q. and X. X. Chu, "Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere," Opt. Express, Vol. 18, 726-731, 2010.
doi:10.1364/OE.18.000726 Google Scholar
6. Wang, K. L. and C. H. Zhao, "Propagation properties of a radial phased-locked partially coherent anomalous hollow beam array in turbulent atmosphere," Opt. Laser Technol., Vol. 57, 44-51, 2014.
doi:10.1016/j.optlastec.2013.09.037 Google Scholar
7. Tang, M. M. and D. M. Zhao, "Regions of spreading of Gaussian array beams propagating through oceanic turbulence," Appl. Optics, Vol. 54, 3407-3411, 2015.
doi:10.1364/AO.54.003407 Google Scholar
8. Liu, D. J., L. Chen, Y. C. Wang, and H. M. Yin, "Intensity properties of four-petal Gaussian vortex beams propagating through atmospheric turbulence," Optik, Vol. 127, 3905-3911, 2016.
doi:10.1016/j.ijleo.2016.01.024 Google Scholar
9. Yin, X. and L. C. Zhang, "Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path," J. Opt. Soc. Am. A, Vol. 33, 1348-1352, 2016.
doi:10.1364/JOSAA.33.001348 Google Scholar
10. Zhu, J., X. Li, H. Tang, and K. Zhu, "Propagation of multi-cosine-Laguerre-Gaussian correlated Schell-model beams in free space and atmospheric turbulence," Opt. Express, Vol. 25, 20071-20086, 2017.
doi:10.1364/OE.25.020071 Google Scholar
11. Wang, F. and O. Korotkova, "Circularly symmetric cusped random beams in free space and atmospheric turbulence," Opt Express, Vol. 25, 5057-5067, 2017.
doi:10.1364/OE.25.005057 Google Scholar
12. Tian, H. H., Y. G. Xu, T. Yang, Z. R. Ma, S. J. Wang, and Y. Q. Dan, "Propagation characteristics of partially coherent anomalous elliptical hollow Gaussian beam propagating through atmospheric turbulence along a slant path ," J. Mod. Optic, Vol. 64, 422-429, 2017.
doi:10.1080/09500340.2016.1241441 Google Scholar
13. Zheng, G., G., J. Wang, L. Wang, M. Zhou, Y. Chen, and M. Song, "Scintillation analysis of pseudo-Bessel-Gaussian Schell-mode beams propagating through atmospheric turbulence with wave optics simulation," Optics & Laser Technology, Vol. 100, 139-144, 2018.
doi:10.1016/j.optlastec.2017.10.002 Google Scholar
14. Wang, F., X. L. Liu, and Y. J. Cai, "Propagation of partially coherent beam in turbulent atmosphere: A review," Progress In Electromagnetics Research, Vol. 150, 123-143, 2015.
doi:10.2528/PIER15010802 Google Scholar
15. Wang, F., J. Li, G. Martinez-Piedra, and O. Korotkova, "Propagation dynamics of partially coherent crescent-like optical beams in free space and turbulent atmosphere," Opt. Express, Vol. 25, 26055-26066, 2017.
doi:10.1364/OE.25.026055 Google Scholar
16. Liu, D., G. Wang, and Y. Wang, "Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence," Optics & Laser Technology, Vol. 98, 309-317, 2018.
doi:10.1016/j.optlastec.2017.08.011 Google Scholar
17. Liu, D. J., X. X. Luo, H. M. Yin, G. Q. Wang, and Y. C. Wang, "Effect of optical system and turbulent atmosphere on the average intensity of partially coherent flat-topped vortex hollow beam," Optik, Vol. 130, 227-236, 2017.
doi:10.1016/j.ijleo.2016.08.128 Google Scholar
18. Banakh, V. A. and L. O. Gerasimova, "Strong scintillations of pulsed Laguerrian beams in a turbulent atmosphere," Opt. Express, Vol. 24, 19264-19277, 2016.
doi:10.1364/OE.24.019264 Google Scholar
19. Liu, D. and Y. Wang, "Evolution properties of a radial phased-locked partially coherent Lorentz-Gauss array beam in oceanic turbulence," Optics & Laser Technology, Vol. 103, 33-41, 2018.
doi:10.1016/j.optlastec.2018.01.014 Google Scholar
20. Golmohammady, S. and B. Ghafary, "Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere," Laser Phys., Vol. 26, 2016.
doi:10.1088/1054-660X/26/6/066201 Google Scholar
21. Liu, D., H. Yin, G. Wang, and Y. Wang, "Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence," Appl. Optics, Vol. 56, 8785-8792, 2017.
doi:10.1364/AO.56.008785 Google Scholar
22. Liu, D. J., Y. C. Wang, and H. M. Yin, "Propagation properties of partially coherent four-petal Gaussian vortex beams in turbulent atmosphere," Opt. Laser Technol., Vol. 78, 95-100, 2016.
doi:10.1016/j.optlastec.2015.10.004 Google Scholar
23. Zhi, D., R. M. Tao, P. Zhou, Y. X. Ma, W. M. Wu, X. L. Wang, and L. Si, "Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence," Opt. Commun., Vol. 387, 157-165, 2017.
doi:10.1016/j.optcom.2016.11.049 Google Scholar
24. Liu, D., H. Zhong, G. Wang, and Y. Wang, "Model of a four-petal Lorentz-Gauss beam and its paraxial propagation ," Optik, Vol. 179, 492-498, 2019.
doi:10.1016/j.ijleo.2018.10.134 Google Scholar
25. Liu, D., G. Wang, H. Zhong, H. Yin, A. Dong, and Y. Wang, "Properties of a four-petal Lorentz-Gauss beam propagating in uniaxial crystal orthogonal to the optical axis," Optik, Vol. 183, 257-265, 2019.
doi:10.1016/j.ijleo.2019.02.136 Google Scholar
26. El Gawhary, O. and S. Severini, "Lorentz beams and symmetry properties in paraxial optics," J. Opt. A: Pure Appl. Opt., Vol. 8, 409-414, 2006.
doi:10.1088/1464-4258/8/5/007 Google Scholar
27. Schmidt, P., "A method for the convolution of lineshapes which involve the Lorentz distribution," Journal of Physics B, Vol. 9, 2331-2339, 1976.
doi:10.1088/0022-3700/9/13/018 Google Scholar
28. Jeffrey, H. D. A., Handbook of Mathematical Formulas and Integrals, 4th Ed., Academic Press Inc, 2008.