Vol. 95
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-12-28
Design and Simulation of CMOS Circuit Structure for CTL-CTM Crosstalk Cancellation Method in High-Speed Interconnects
By
Progress In Electromagnetics Research Letters, Vol. 95, 115-123, 2021
Abstract
A circuit module for coupled transmission line channel transmission matrix (CTL-CTM) crosstalk cancellation is designed and simulated by using CMOS technology in a high-speed interconnection system. The module consists of an adder and a subtractor to realize analog addition and subtraction of digital signals. The adder is composed of CMOS transistor pair connected to an inverter at the next stage. The subtractor is composed of a current mirror as the load of CMOS differential pair. The crosstalk cancellation circuit module is simulated and verified by advanced design system (ADS) software. The designed adder and subtractor work well and have no significant difference with the ideal output, and the signal eye diagram recovered by the crosstalk cancellation circuit is of good quality, which solves the circuit implementation problem in the CTL-CTM crosstalk cancellation method.
Citation
Huifang Sun, Yafei Wang, Yanxiao Zhao, and Xuehua Li, "Design and Simulation of CMOS Circuit Structure for CTL-CTM Crosstalk Cancellation Method in High-Speed Interconnects," Progress In Electromagnetics Research Letters, Vol. 95, 115-123, 2021.
doi:10.2528/PIERL20092303
References

1. Mudavath, R. and B. R. Naik, "Estimation of far end crosstalk and near end crosstalk noise with mutually coupled RLC interconnect models," 2018 International Conference on Communication and Signal Processing (ICCSP), 182-185, Chennai, India, 2018.
doi:10.1109/ICCSP.2018.8524191

2. Huang, B., K. Chen, and C. Wang, "Far-end crosstalk noise reduction using decoupling capacitor," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 3, 836848, 2016.
doi:10.1109/TEMC.2016.2527054

3. Lee , K., H. Lee, H. Jung, et al. "A serpentine guard trace to reduce the far-end crosstalk voltage and the crosstalk induced timing jitter of parallel microstrip lines," IEEE Transactions on Advanced Packaging, Vol. 31, No. 4, 809-817, 2008.
doi:10.1109/TADVP.2008.924226

4. Halligan, M. S. and D. G. Beetner, "Maximum crosstalk estimation in weakly coupled transmission lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 3, 736-744, 2014.
doi:10.1109/TEMC.2014.2304735

5. Wang, Y., H. Sun, and X. Li, "Non-crosstalk scheme based on linear combination transformation in high-speed interconnects," Progress In Electromagnetics Research Letters, Vol. 85, 45-50, 2019.

6. Skotnicki, T., J. A. Hutchby, T.-J. King, H.-P. Wong, and F. Boeuf, "The end of CMOS scaling: Toward the introduction of new materials and structural changes to improve MOSFET performance," IEEE Circuits and Devices Magazine, Vol. 21, No. 1, 16-26, Jan.–Feb. 2005.
doi:10.1109/MCD.2005.1388765

7. Wang, Y. and X. Li, "Crosstalk cancellation method based on unitary transformation of coupled transmission lines-channel transmission matrix," Progress In Electromagnetics Research Letters, Vol. 52, 45-50, 2015.
doi:10.2528/PIERL15011602

8. Oh, T. and R. Harjani, "A 6-Gb/s MIMO crosstalk cancellation scheme for high-speed I/Os," ” IEEE Solid-State Circuits, Vol. 46, No. 8, 1843-1856, Aug. 2011.
doi:10.1109/JSSC.2011.2151410

9. Wang, C., H.-M. Lam, and X. He, "A high-voltage analog adder based on class-B amplifier for source driver of AMOLED EXTERNAL COMPENSATION SCHEme," SID Symposium Digest of Technical Papers, 54, 2017.

10. Bansal, N. and R. Pandey, "A novel current subtractor based on modified wilson current mirror using PMOS transistors," 2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE), 444-449, Ghaziabad, 2016.
doi:10.1109/ICMETE.2016.77

11. Gupta, R., R. Gupta, and S. Sharma, "High performance full subtractor using floating-gate MOSFET," Microelectronic Engineering, Vol. 162, 75-78, 2016.
doi:10.1016/j.mee.2016.05.011

12. Bliskavitski, A. K., Y. K. Vladimirov, and S. K. Taktashov, "Microwave impedance matching of a laser diode to a microstrip line with a 50-Ω characteristic impedance," Quantum Electronics, Vol. 23, No. 3, 251, 1993.
doi:10.1070/QE1993v023n03ABEH002985

13. Wang, Y. and X. Li, "Crosstalk cancellation study of eigen value decomposition of n-channel transmission matrix," Chinese High Technology Letters, Vol. 28, No. 4, 320-326, 2018.