1. Li, X., Z. Shao, M. Zhu, and J. Yang, Fundamentals of Optical Computing Technology: Forward the Next Generation Supercomputer, 1st Ed., Springer, 2018.
doi:10.1109/LPT.2014.2340435
2. Younis, R. M., N. F. F. Areed, and S. S. A. Obayya, "Fully integrated AND and OR optical logic gates," IEEE Photonics Technology Letters, Vol. 26, No. 19, 1900-1903, 2014.
doi:10.1364/OE.27.025841 Google Scholar
3. He, L., W. X. Zhang, and X. D. Zhang, "Topological all-optical logic gates based on two-dimensional photonic crystals," Optic Express, Vol. 27, No. 18, 25841-25860, 2019.
doi:10.1364/OE.27.025841 Google Scholar
4. Dey, S., A. K. Shukla, and V. P. Dubey, "Design of all optical logical OR gate based on 2-D photonic crystal," Proceeding of 2017 International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT), Nov. 17–18, 2017.
doi:10.1109/LPT.2016.2596580 Google Scholar
5. Pirzadi, M., A. Mir, and D. Bodaghi, "Realization of ultra-accurate and compact all-optical photonic crystal OR logic gate," IEEE Photonics Technology Letters, Vol. 28, No. 21, 2387-2390, 2016.
doi:10.1109/LPT.2016.2596580 Google Scholar
6. Salah, B. M., L. M. Redha, B. Touraya, and B. Mohamed, "All-optical NOT/OR/XOR logic gates based on photonic crystal with low response time and high contrast ratio," Proceeding of 2020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), May 16–17, 2020. Google Scholar