Vol. 96
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-01-24
Rectangular Grid Antennas with Various Boundary Square-Rings Array
By
Progress In Electromagnetics Research Letters, Vol. 96, 27-36, 2021
Abstract
Rectangular grid antennas are widely used in practice due to their advantages and versatility. This paper simplifies the design procedures of such antennas by optimizing their radiation characteristics using minimum number of the optimized elements while maintaining the same performance. The method consists of partitioning a fully square grid array into two unequally sub-planar arrays. The first one contains the inner and the most central elements of the initial planar array in which they are chosen to be non-adaptive elements, while the remaining outer and boundary elements which constitute L number of the square-rings are chosen to be adaptive elements. Then, the optimization process is carried out on those outer rings instead of fully planar array elements. Compared to a standard N×M planar array with fully adaptive elements, the number of optimized elements could be reduced from N×M to 2{2L(N-L)}, so as to significantly reduce the system cost without affecting the overall array performance. Results of applying the proposed method to optimize a small 9×9, medium 20×20, and large 40×40 size planar arrays with various values of L are shown.
Citation
Jafar Ramadhan Mohammed, "Rectangular Grid Antennas with Various Boundary Square-Rings Array," Progress In Electromagnetics Research Letters, Vol. 96, 27-36, 2021.
doi:10.2528/PIERL20112402
References

1. Balanis, C. A., Antenna Theory, Analysis and Design, 3rd Ed., John Wiley & Sons, 2005.

2. Liao, W.-P. and F.-L. Chu, "Null steering in planar array by controlling only current amplitudes using genetic algorithms," Microwave and Optical Technology Letters, Vol. 16, No. 2, 97-103, October 1997.
doi:10.1016/j.aeue.2007.11.006

3. Aksoy, E. and E. Afacan, "Planar antenna pattern nulling using differential evolution algorithm," AEU Int. J. Electron. Commun., Vol. 63, 116-122, 2009.
doi:10.1109/8.585749

4. Haupt, R. L., "Phase-only adaptive nulling with a genetic algorithm," IEEE Transactionons on Antennas and Propagation, Vol. 45, No. 6, 1009-1015, June 1997.
doi:10.1016/j.aeue.2019.02.004

5. Mohammed, J. R., "Obtaining wide steered nulls in linear array patterns by controlling the locations of two edge elements," AEU Int. J. Electron. Commun., Vol. 101, 145-151, March 2019.
doi:10.2528/PIERC12121201

6. Mohammed, J. R., "Design of printed Yagi antenna with additional driven element for WLAN applications," Progress In Electromagnetics Research C, Vol. 37, 67-81, January 2013.
doi:10.1049/el:20011021

7. Lopez, P., J. A. Rodriguez, F. Ares, and E. Moreno, "Low-sidelobe patterns from linear and planar arrays with uniform excitations except for phases of a small number of elements," Electronics Letters, Vol. 37, No. 25, 1495-1497, December 6, 2001.
doi:10.1109/LAWP.2018.2807371

8. Mohammed, J. R., "Element selection for optimized multi-wide nulls in almost uniformly excited arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 629-632, April 2018.
doi:10.1109/LAWP.2018.2807371

9. Sayidmarie, K. H. and J. R. Mohammed, "Performance of a wide angle and wide band nulling method for phased arrays," Progress In Electromagnetics Research M, Vol. 33, 239-249, October 2013.
doi:10.1049/iet-map.2018.5221

10. El-Khamy, S. E., N. O. Korany, and M. A. Abdelhay, "Minimising number of perturbed elements in linear and planar adaptive arrays with broad nulls using compressed sensing approach," IET Microwaves, Antennas & Propagation, Vol. 13, No. 8, 1134-1141, July 2019.
doi:10.1109/TAP.1978.1141952

11. Morgan, D., "Partially adaptive array techniques," IEEE Transactions on Antennas and Propagation, Vol. 26, No. 6, 823-833, Nov. 1978.
doi:10.1109/TAP.1978.1141952

12. Skolnik, M. I., J. W. Sherman, III, and F. C. Ogg Jr., "Statistically designed density-Tapered arrays," IEEE Transactions on Antennas and Propagation, Vol. 12, 408-411, July 1964.
doi:10.2528/PIERM18021604

13. Mohammed, J. R., "Thinning a subset of selected elements for null steering using binary genetic algorithm," Progress In Electromagnetics Research, Vol. 67, 147-155, March 2018.
doi:10.1049/iet-map.2019.0327

14. Parsa, A. and H. Oraizi, "Synthesis of planar continuous current sources with arbitrary shapes for generation of desired radiation patterns by methods of moments and least squares," IET Microwaves, Antennas & Propagation, Vol. 14, No. 5, 348-359, April 15, 2020.
doi:10.1109/TAES.2018.2879555

15. Morris, Z. N. and K. Th. Wong, "Comparing the "rim" versus the "filled" rectangular array grids: Their direction-finding Cramer-Rao bounds," IEEE Transactions on Aerospace and Electronic Systems, Vol. 55, No. 4, 1945-1956, 2019.
doi:10.1109/TAP.2018.2871715

16. Alijani, M. G. H. and M. H. Neshati, "Development a new array factor synthesizing technique by pattern integration and least square method," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 6869-6874, 2018.
doi:10.1109/LAWP.2014.2325025

17. Mohammed, J. R. and K. H. Sayidmarie, "Sidelobe cancellation for uniformly excited planar array antennas by controlling the side elements," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 987-990, 2014.
doi:10.1109/TAP.2011.2173119

18. Will, P. M. and N. Keizer, "Amplitude-only low sidelobe synthesis for large thinned circular array antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1157-1161, February 2012.
doi:10.1109/TAP.2016.2526084

19. Safaai-Jazi, A. and W. L. Stutzman, "A new low-sidelobe pattern synthesis technique for equally spaced linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1317-1324, April 2016.
doi:10.1109/TAP.2004.823969

20. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, February 2004.
doi:10.1002/9780470937464

21. Haupt, R. L., Antenna Arrays: A Computational Approach, John Wiley & Sons, 2010.
doi:10.2528/PIERM20062906

22. Mohammed, J. R., "Simplified rectangular planar array with circular boundary for side lobe suppression," Progress In Electromagnetics Research M, Vol. 97, 57-68, 2020.
doi:10.2528/PIERM20062906