Vol. 97
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-04-12
Quad-Port Miniaturized Ultra-Wideband MIMO Antenna with Metal Vias
By
Progress In Electromagnetics Research Letters, Vol. 97, 95-103, 2021
Abstract
A miniaturized four-port multiple-input multiple-output (MIMO) antenna for ultra-wideband (UWB) applications is presented. The proposed UWB MIMO antenna has a compact size of 34 × 34 mm2. Four antenna elements are placed orthogonally, and the element is connected to the feed line through metal vias in the substrate. These metal vias increase the bandwidth of the high frequency part of the antenna. A T-shaped slit, a rectangular slit, and a triangular chamfer are etched on the ground between two adjacent antenna elements. The working bandwidth of the antenna is 2.5-11.6 GHz, covering the entire UWB application band. The isolation between antenna elements is more than 18 dB within the operating bandwidth. Details of the design methodology and results are presented and discussed. Envelope correlation coefficient is computed, and it is within the acceptable limit, which validates the design concept for building a compact MIMO antenna system with good performance.
Citation
Qingzhi Yang, Kang Wang, and Yufa Sun, "Quad-Port Miniaturized Ultra-Wideband MIMO Antenna with Metal Vias," Progress In Electromagnetics Research Letters, Vol. 97, 95-103, 2021.
doi:10.2528/PIERL21020604
References

1. Tang, W. and E. Culurciello, "A low-power high-speed ultra-wideband pulse radio transmission system," IEEE Transactions on Biomedical Circuits and Systems, Vol. 3, No. 5, 286-292, 2009.
doi:10.1109/TBCAS.2009.2031603

2. Briso, C., C. Calvo, and Y. Xu, "UWB propagation measurements and modelling in large indoor environments," IEEE Access, Vol. 7, 41913-41920, 2019.
doi:10.1109/ACCESS.2019.2905142

3. Jiang, W., Y. Cui, B. Liu, W. Hu, and Y. Xi, "A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications," IEEE Access, Vol. 7, 112554-112563, 2019.
doi:10.1109/ACCESS.2019.2934892

4. Li, Y., C.-Y.-D. Sim, Y. Luo, and G. Yang, "High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smartphones," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3820-3830, 2019.
doi:10.1109/TAP.2019.2902751

5. Thummaluru, S. R., R. Kumar, and R. K. Chaudhary, "Isolation and frequency reconfigurable compact MIMO antenna for wireless local area network applications," IET Microwaves Antennas & Propagation, Vol. 13, No. 4, 519-525, 2019.
doi:10.1049/iet-map.2018.5895

6. Wang, S., Y. Ji, D. Gibbins, and X. Yin, "Impact of dynamic wideband MIMO body channel characteristics on healthcare rehabilitation of walking," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 505-508, 2017.
doi:10.1109/LAWP.2016.2586299

7. Biswas, A. K. and U. Chakraborty, "Compact wearable MIMO antenna with improved port isolation for ultra-wideband applications," IET Microwaves Antennas & Propagation, Vol. 13, No. 4, 498-504, 2019.
doi:10.1049/iet-map.2018.5599

8. Chandel, R., A. K. Gautam, and K. Rambabu, "Design and packaging of an eye-shaped multiple-input-multiple-output antenna with high isolation for wireless UWB applications," IEEE Transactions on Components Packaging and Manufacturing Technology, Vol. 8, No. 4, 635-642, 2018.
doi:10.1109/TCPMT.2018.2806562

9. Iqbal, A., O. A. Saraereh, A. W. Ahmad, and S. Bashir, "Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna," IEEE Access, Vol. 6, 2755-2759, 2018.
doi:10.1109/ACCESS.2017.2785232

10. Ul Haq, M. A. and S. Koziel, "Ground plane alterations for design of high-isolation compact wideband MIMO antenna," IEEE Access, Vol. 6, 48978-48983, 2018.
doi:10.1109/ACCESS.2018.2867836

11. Li, W., Y. Hei, P. M. Grubb, X. Shi, and R. T. Chen, "Compact inkjet-printed flexible MIMO antenna for UWB applications," IEEE Access, Vol. 6, 50290-50298, 2018.
doi:10.1109/ACCESS.2018.2868707

12. Ghosh, J., S. Ghosal, D. Mitra, and S. R. B. Chaudhuri, "Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator," Progress In Electromagnetics Research Letters, Vol. 59, 115-122, 2016.
doi:10.2528/PIERL16012202

13. Khan, M. S., A. D. Capobianco, S. Asif, A. Iftikhar, B. Ijaz, and B. D. Braaten, "Compact 4 × 4 UWB MIMO antenna with WLAN band rejection operation," Electronic Letters, Vol. 51, No. 14, 1048-1055, 2015.
doi:10.1049/el.2015.1252

14. Tripathi, S., A. Mohan, and S. Yadav, "A compact koch fractal UWB MIMO antenna with WLAN band-rejection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1565-1568, 2015.
doi:10.1109/LAWP.2015.2412659

15. Sipal, D. and M. P. Abegaonkar S. K. Koul, "Easily extendable compact planar UWB MIMO antenna array," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2328-2331, 2017.
doi:10.1109/LAWP.2017.2717496

16. Wani, Z. and D. Kumar, "A compact 4×4 MIMO antenna for UWB applications," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1433-1436, 2016.
doi:10.1002/mop.29840

17. Ali, W. A. E. and A. A. Ibrahim, "A compact double-sided MIMO antenna with an improved isolation for UWB applications," AEU-International Journal of Electronics and Communications, Vol. 82, 7-13, 2017.
doi:10.1016/j.aeue.2017.07.031

18. Ullah, U., I. B. Mabrouk, S. Koziel, et al. "Implementation of spatial/polarization diversity for improved-performance circularly polarized multiple-input-multiple-output ultra-wideband antenna," IEEE Access, Vol. 8, 64112-64119, 2020.
doi:10.1109/ACCESS.2020.2984697

19. Rekha, S. D., P. Pardhasaradhi, B. Madha, et al. "Dual band notched orthogonal 4-element MIMO antenna with isolation for UWB applications," IEEE Access, Vol. 8, 145871-145880, 2020.
doi:10.1109/ACCESS.2020.3015020

20. Sani, M. M., R. Chowdhury, and R. K. Chaudhary, "An ultra-wideband rectangular dielectric resonator antenna with MIMO configuration," IEEE Access, Vol. 8, 139658-139669, 2020.
doi:10.1109/ACCESS.2020.3012793

21. Khan, M. S., A. Iftikhar, R. Shubair, A. D. Capobianco, et al. "Eight-element compact UWBMIMO/diversity antenna with WLAN band rejection for 3G/4G/5G communications," Open Journal of Antennas and Propagation, Vol. 1, 196-206, 2020.