Vol. 97
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-04-20
Comparison of the Uniformity and Efficiency of the Square and Circular Helmholtz Coils for Wireless Power Transmission System
By
Progress In Electromagnetics Research Letters, Vol. 97, 131-139, 2021
Abstract
Wireless power transmission system (WPTS) based on near-field inductive coupling is an effective way to provide power for gastrointestinal micro-robot. WPTS is normally realized by a Helmholtz coil outside the body and a three-dimensional receiving coil in the micro-robot. Helmholtz coil has two types, circle and square. However, a quantitative comparison for them in the application of WPTS has not been available yet. In this paper, the calculating models of the electromagnetic field intensity (EMFI) for the circular Helmholtz coil (CHC) and square Helmholtz coil (SHC) are built. With the built model, the uniformities of the electromagnetic field (UEMF) of two Helmholtz coils are calculated. The actual coil system is built to verify the correctness of the built models. When the diameter of the CHC and the side length of the SHC are both 40 cm, the available areas (UEMF ≥ 90%) for powering the robot supplied by the CHC and SHC are 39% and 56%, respectively. Also, the consumed powers of the two coils, when identical EMFI is excited, are compared. When the EMFI at the center of the CHC and SHC are both 1 Gs, the consumed powers are 5.09 W and 4.62 W, respectively. The above results show that compared to the CHC, the SHCnot only has better uniformity, but also consumes less power. Thus, it is more suitable for the WPTS.
Citation
Zenglei Zhang, Changshun Yuan, Jinyang Gao, Chen Gao, and Jinshan Zhou, "Comparison of the Uniformity and Efficiency of the Square and Circular Helmholtz Coils for Wireless Power Transmission System," Progress In Electromagnetics Research Letters, Vol. 97, 131-139, 2021.
doi:10.2528/PIERL21032203
References

1. Gao, J., G. Yan, Y. Shi, H. Cao, K. Huang, H. Gao, and J. Liu, "Analysis of connection way of a three-dimensional receiving coil onboard a capsule robot for wireless power transmission," Progress In Electromagnetics Research M, Vol. 78, 39-48, 2019.
doi:10.2528/PIERM18102909

2. Guo, S., Q. Yang, L. Bai, and Y. Zhao, "Development of multiple capsule robots in pipe," Micromachines, Vol. 9, No. 6, 259-274, 2018.
doi:10.3390/mi9060259

3. Gao, J., G. Yan, S. He, F. Xu, and Z. Wang, "Design, analysis, and testing of a motor-driven capsule robot based on a sliding clamper," Robotica, Vol. 35, 521-536, 2017.
doi:10.1017/S0263574715000697

4. Park, H., D. Kim, and B. Kim, "A robotic colonoscope with long stroke and reliable leg clamping," International Journal of Precision Engineering and Manufacturing, Vol. 13, No. 8, 1461-1466, 2012.
doi:10.1007/s12541-012-0192-2

5. Basar, M. R., F. Malek, K. M. Juni, M. S. Idris, and M. Saleh, "Ingestible wireless capsule technology: A review of development and future indication," International Journal of Antennas and Propagation, Vol. 2012, No. 4, 1548-1551, 2012.

6. Moglia, A., A. Menciassi, P. Dario, and A. Cuschieri, "Capsule endoscopy: Progress update and challenges ahead," Nature Reviews Gastroenterology & Hepatology, Vol. 6, No. 6, 353-362, 2009.
doi:10.1038/nrgastro.2009.69

7. Ciuti, G., A. Menciassi, and P. Dario, "Capsule endoscopy: from current achievements to open challenges," IEEE Reviews in Biomedical Engineering, Vol. 4, 59-72, 2012.

8. Baser, M. R., M. Y. Ahmad, J. Cho, and F. Ibrahim, "An improved resonant wireless power transfer system with optimum coil configuration for capsule endoscopy," Sensors and Actuators A: Physical, Vol. 249, 207-216, 2016.
doi:10.1016/j.sna.2016.08.035

9. Basar, M. R., M. Y. Ahmad, J. Cho, and F. Ibrahim, "Stable and high-efficiency wireless power transfer system for robotic capsule using a modified Helmholtz coil," IEEE Transactions on Industrial Electronics, Vol. 64, No. 2, 1113-1122, 2017.
doi:10.1109/TIE.2016.2614268

10. Basar, M. R., M. Y. Ahmad, J. Cho, and F. Ibrahim, "An improved wearable resonant wireless power transfer system for biomedical capsule endoscope," IEEE Transactions on Industrial Electronics, Vol. 65, No. 10, 7772-7781, 2018.
doi:10.1109/TIE.2018.2801781

11. Carta, R., G. Tortora, J. Thone, B. Lenaerts, P. Valdastri, A. Menciassi, P. Dario, and R. Puers, "Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection," Biosensors and Bioelectronics, Vol. 25, No. 5, 845-851, 2010.

12. Jia, Z., G. Yan, Z. Wang, and H. Liu, "Efficiency optimization of wireless power transmission systems for active capsule endoscopes," Physiological Measurement, Vol. 32, No. 10, 1561-1573, 2011.
doi:10.1088/0967-3334/32/10/005

13. Gao, J. and G. Yan, "A novel power management circuit using a super-capacitor array for wireless powered capsule robot," IEEE/ASME Transactions on Mechatronics, Vol. 22, No. 3, 1444-1455, 2017.
doi:10.1109/TMECH.2016.2646859

14. Luo, W., Q. Ke, G. Yan, and K. Yang, "Analytical computation of AC resistance of single-layer air-core Helmholtz coils," Progress In Electromagnetics Research C, Vol. 51, 111-119, 2014.
doi:10.2528/PIERC14042803

15. Gao, J., G. Yan, Z. Wang, S. He, F. Xu, P. Jiang, and D. Liu, "Design and testing of a motor-based capsule robot powered by wireless power transmission," IEEE/ASME Transactions on Mechatronics, Vol. 21, No. 2, 683-693, 2016.
doi:10.1109/TMECH.2015.2497083

16. Gao, J., G. Yan, Z. Wang, P. Jiang, and D. Liu, "A capsule robot powered by wireless power transmission: Design of its receiving coil," Sensor. Actuat. A-Phys., Vol. 234, 133-142, Oct. 2015.