Vol. 98
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-06-18
Design of Tri-Band Hybrid Dielectric Resonator Antenna for Wireless Applications
By
Progress In Electromagnetics Research Letters, Vol. 98, 75-84, 2021
Abstract
In this article, a compact dielectric resonator antenna (DRA) with partial ground plane for wireless applications is examined. The exhibited structure is fed by a microstrip line. To demonstrate the functionality of a tri-band, a circular dielectric resonator antenna with concentric circular rings is created. The developed antenna parametric analysis has been performed on HFSS platform. The configured design operates at three frequency bands, i.e. 1.98-2.59 GHz (ISM), 3.24-3.85 GHz (Wi-max), and 4.85-5.85 GHz (WLAN), with the fractional bandwidths of 26.6%, 20.4%, and 18.67%, respectively. The customized concentric rings are placed onto the substrate to reinforce the antenna appearance and also miniaturize the size. The measured outcomes are strongly in accordance with the simulated results. The designed model can be customized with certain attributes to wireless applications.
Citation
Lavuri Nageswara Rao, Govardhani Immadi, and Madhavareddy Venkata Narayana, "Design of Tri-Band Hybrid Dielectric Resonator Antenna for Wireless Applications," Progress In Electromagnetics Research Letters, Vol. 98, 75-84, 2021.
doi:10.2528/PIERL21032516
References

1. Kishk, A. A., B. Ahn, and D. Kajfez, "Broadband stacked dielectric resonator antennas," Electron. Lett., Vol. 25, 1232-1233, Aug. 1989.
doi:10.1049/el:19890826        Google Scholar

2. Varshney, G., S. Gotra, V. S. Pandey, and R. S. Yaduvanshi, "Inverted-sigmoid shaped multiband dielectric resonator antenna with dual-band circular polarization," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 206-2082, Apr. 2018.
doi:10.1109/TAP.2018.2800799        Google Scholar

3. O’Connor, E. M. and S. A. Long, "The history of the development of the dielectric resonator antenna," ICEAA International Conference on Electromagnetics in Advanced Applications, 872-875, Turin, Italy, Sept. 2007.        Google Scholar

4. Simons, R. N. and R. Q. Lee, "Effect of parasitic dielectric resonator on CPW/aperture-coupled dielectric resonator antenna," Proc. Inst. Elect. Eng., Microw. Antennas Propag., Vol. 140, 336-338, Oct. 1993.        Google Scholar

5. Chen, H.-M., Y.-K. Wang, Y.-F. Lin, S.-C. Lin, and S.-C. Pan, "A compact dual-band dielectric resonator antenna using a parasitic slot," IEEE Antennas and Wireless Propagation Lett., Vol. 8, 173-176, Apr. 2009.
doi:10.1109/LAWP.2008.2001119        Google Scholar

6. Song, Z., H. Zheng, M. Wang, Y. Li, T. Song, E. Li, and Y. Li, "Equilateral triangular dielectric resonator and metal patch hybrid antenna for UWB application," IEEE Access, Vol. 7, 119060-119068, 2019.
doi:10.1109/ACCESS.2019.2936013        Google Scholar

7. Afifi, A. I., A. B. Abdel-Rahman, A. S. A. El-Hameed, A. Allam, and S. M. Ahmed, "Small frequency ratio multi-band dielectric resonator antenna utilizing vertical metallic strip pairs feeding structure," IEEE Access, Vol. 8, 112840-112845, 2020.
doi:10.1109/ACCESS.2020.3002789        Google Scholar

8. Fatah, S. Y. A., E. K. I. K. I. Hamad, W. Swelam, A. M. M. A. Allam, M. F. Abo Sree, and H. A. Mohamed, "Design and implementation of UWB slot-loaded printed antenna for microwave and millimeter wave applications," IEEE Access, Vol. 9, 29555-29564, 2021.
doi:10.1109/ACCESS.2021.3057941        Google Scholar

9. Leung, K. W., K. Y. Chow, K. M. Luk, and E. K. N. Yung, "Low-profile circular disk DR antenna of very high permittivity excited by a Microstrip line," Electron. Lett., Vol. 33, 1004-1005, Jun. 1997.
doi:10.1049/el:19970718        Google Scholar

10. Kranenburg, R. A. and S. A. Long, "Microstrip transmission line excitation of dielectric resonator antennas," Electron. Lett., Vol. 24, 1156-1157, Sept. 1988.
doi:10.1049/el:19880785        Google Scholar

11. So, K. K. and K. W. Leung, "Bandwidth enhancement and frequency tuning of the dielectric resonator antenna using a parasitic slot in the ground plane," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 12, 4169-4172, Dec. 2005.
doi:10.1109/TAP.2005.860002        Google Scholar

12. Huitema, L., M. Koubeissi, C. Decroze, and T. Monediere, "Compact and multiband dielectric resonator antenna with reconfigurable radiation pattern," Proc. 4th Eur. Conf. Antennas Propag., 1-4, Apr. 2010.        Google Scholar

13. Leung, K. W. and K. K. So, "Frequency-tunable designs of the linearly and circularly polarized dielectric resonator antenna using a parasitic slot," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 572-576, Jan. 2005.
doi:10.1109/TAP.2004.838762        Google Scholar

14. Wu, Q., "Characteristic mode assisted design of dielectric resonator antennas with feedings," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5294-5304, Aug. 2019.
doi:10.1109/TAP.2019.2916763        Google Scholar

15. Lin, I. K. C., M. H. Jamaluddin, A. Awang, R. Selvaraju, M. H. Dahri, L. C. Yen, et al. "A triple band hybrid MIMO rectangular dielectric resonator antenna for LTE applications," IEEE Access, Vol. 7, 122900-122913, Aug. 2019.        Google Scholar

16. Denidni, T. A. and Q. Rao, "Hybrid dielectric resonator antenna with radiating slot for dual-frequency operation," IEEE Antennas and Wireless Propagation Lett., Vol. 3, 321-323, Dec. 2004.
doi:10.1109/LAWP.2004.839455        Google Scholar

17. Elek, F., R. Abhari, and G. V. Eleftheriades, "A uni-directional ring-slot antenna achieved by using an electromagnetic band-gap surface," IEEE Transactions on Antennas and Propagation, Vol. 53, 181-190, Jan. 2005.
doi:10.1109/TAP.2004.840533        Google Scholar

18. Row, J. S. and S. W. Wu, "Circularly-polarized wide slot antenna loaded with a parasitic patch," IEEE Transactions on Antennas and Propagation, Vol. 56, 2826-2832, Sept. 2008.
doi:10.1109/TAP.2008.928769        Google Scholar

19. Salonen, P. and L. Hurme, "A novel fabric WLAN antenna for wearable applications," IEEE Antennas and Propagation Society International Symposium Antennas and Propagation Society International Symposium, Vol. 2, 700-703, IEEE, Columbus, OH, USA, 2003.        Google Scholar

20. Tronquo, A., H. Rogier, C. Hertleer, and L. V. Langenhove, "Applying textile materials for the design of antennas for wireless body area networks," Proceedings of EuCap 2006: First European Conference on Antennas and Propagation, Nice, France, Nov. 6–10, 2006.        Google Scholar

21. Nageswara Rao, L. and I. Govardhani, "A cylindrical dielectric resonator antenna with meander slot for WBAN," International Journal of Engineering and Advanced Technology, Vol. 9, 6486-6489, 2019.        Google Scholar

22. Raju, M. P., D. S. Phani Kishore, and B. T. P. Madhav, "CPW fed T-shaped wearable antenna for ISM band, Wi-Fi, WiMAX, WLAN and fixed satellite service applications," Journal of Electromagnetic Engineering and Science, Vol. 19, No. 2, 140-146, 2019.
doi:10.26866/jees.2019.19.2.140        Google Scholar

23. Palla, R. K. and K. K. Naik, "Design of dual band antenna with defects on patch and ground for wireless applications," International Journal of Recent Technology and Engineering, Vol. 8, No. 2, 261-264, 2019.
doi:10.35940/ijrte.A3307.078219        Google Scholar

24. Monik, M., S. K. Rajiya, and B. T. P. Madhav, "Fractal shaped concentric ring structured reconfigurable monopole antenna with DGS for GPS, GSM, WLAN and ISM band medical applications," Indian Journal of Public Health Research and Development, Vol. 9, No. 6, 285-289, 2018.
doi:10.5958/0976-5506.2018.00565.X        Google Scholar

25. Raj Kamal, K. and G. Immadi, "A compact UWB micro strip patch antenna using coplanar wave guide feeding for bio medical applications," ARPN Journal of Engineering and Applied Sciences, Vol. 13, No. 3, 976-981, 2018.        Google Scholar

26. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Micrstrip Antenna Design Hand Book, Artech House, Norwood, MA, USA, 2001.

27. Lin, I. K. C., M. H. Jamaluddin, A. Awang, R. Selvaraju, M. H. Dahri, L. C. Yen, and H. A. Rahim, "A triple band hybrid MIMO rectangular dielectric resonator antenna for LTE applications," IEEE Access, Vol. 7, 122900-122913, 2019.        Google Scholar

28. Immadi, G., N. K. Majji, M. Venkata Narayana, and A. Navya, "Comparative analysis of pass band characteristics of a rectangular waveguide with and without a dielectric slab," International Journal of Innovative Technology and Exploring Engineering, Vol. 8, No. 6, 1209-1211, 2019.        Google Scholar

29. Ramakrishna, T. V., B. T. P. Madhav, M. Venkateswara Rao, A. Babu Rao, A. Sunaina, A. Avinash, and B. Shivani, "SRR loaded half-mode substrate integrated waveguide monopole slot antenna for multband applications," International Journal of Engineering and Technology (UAE), Vol. Vol. 7 (1.1 Special Issue 1), 560-564, 2018.        Google Scholar

30. Venkata Narayana, M., G. Immadi, H. Muppa, M. Nagisetty, and H. V. R. Konda, "Design of microstrip circular patch antenna array," Journal of Advanced Research in Dynamical and Control Systems, Vol. 9, No. 17, 2178-2185, 2017.        Google Scholar

31. Bemani, M., S. Nikmehr, and H. Youneiraad, "A novel small triple band rectangular dielectric resonator antenna for WLAN and WiMAX applications," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11–12, 1688-1698, 2012.        Google Scholar

32. Huang, C. L. and Y. W. Tseng, "A low-loss dielectric using CaTiO3-modified Mg1.8Ti1.1O4 ceramics for applications in dielectric resonator antenna," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 21, 2293-2300, 2014.
doi:10.1109/TDEI.2014.004074        Google Scholar

33. Kha, A. A., M. H. Jamaluddin, S. Aqeel, J. Nasir, J. U. R. Kazim, and O. Owais, "A dual-band MIMO dielectric resonator antenna for WiMAX/WLAN applications," IET Microwaves, Antennas & Propagation, Vol. 11, 113-120, 2017.        Google Scholar

34. Fang, X. S. and S. M. Chen, "Design of the wide dual-band rectangular souvenir dielectric resonator antenna," IEEE Access, Vol. 7, 161621-161629, 2019.
doi:10.1109/ACCESS.2019.2951819        Google Scholar