Vol. 103
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-04-22
AgileDARN Radar Echo Automatic Classification Algorithm Using Support Vector Machine
By
Progress In Electromagnetics Research Letters, Vol. 103, 151-160, 2022
Abstract
In this paper, an AgileDARN (Agile Dual Auroral Radar Network) radar echo classification method based on support vector machine is proposed. AgileDARN radar echo includes ionospheric backscattering echo, meteor echo, noise interference, etc. With the continuous operation of AgileDARN radar, the amount of data increases rapidly, requiring efficient and reliable classification methods. In order to efficiently classify the echoes of AgileDARN radar, this paper proposes an echo classification method based on support vector machine. By analyzing the characteristics of the autocorrelation function (ACF) of the sampled data and extracting the features, the support vector machine(SVM) classification method is adopted to classify AgileDARN echo into ionospheric backscattering echo, meteor echo and noise interference. The data analysis shows that the classification accuracy of training data set is more than 99%, and that of test data set is more than 95%. Using this classification model to classify 1800 echo data of AgileDARN radar, the classification accuracy is more than 91% compared with the result of manual interpretation.
Citation
Guangming Li, "AgileDARN Radar Echo Automatic Classification Algorithm Using Support Vector Machine," Progress In Electromagnetics Research Letters, Vol. 103, 151-160, 2022.
doi:10.2528/PIERL22011807
References

1. Greenwald, R. A., K. B. Baker, J. R. Dudeney, et al. "Darn superdarn --- A global view of the dynamics of high-latitude convection," Space Science Reviews, Vol. 71, No. 1-4, 761-796, 1995.
doi:10.1007/BF00751350        Google Scholar

2. Ribeiro, A. J., J. M. Ruohoniemi, P. V. Ponomarenko, et al. "A comparison of SuperDARN ACF tting methods," Radio Science, Vol. 48, No. 3, 274-282, 2013.
doi:10.1002/rds.20031        Google Scholar

3. Greenwald, R. A., J. B. Baker, R. A. Hutchins, et al. "An HF phased-array radar for studying small-scale structure in the high-latitude ionosphere," Radio Science, Vol. 20, 63-79, 1985.
doi:10.1029/RS020i001p00063        Google Scholar

4. Berngardt, O. I., J. M. Ruohoniemi, N. Nishitani, et al. "Attenuation of decameter wavelength sky noise during X-ray solar ares in 2013{2017 based on the observations of midlatitude HF radars," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 173, 1-13, 2018.
doi:10.1016/j.jastp.2018.03.022        Google Scholar

5. Ruohoniemi, J. M., R. A. Greenwald, J. P. Villain, et al. "Coherent HF radar backscatter from small-scale irregularities in the dusk sector of the subauroral ionosphere," Journal of Geophysical Research-Space Physics, Vol. 93, No. A11, 12871-12882, 1988.
doi:10.1029/JA093iA11p12871        Google Scholar

6. Milan, S. E., T. K. Yeoman, M. Lester, et al. "Initial backscatter occurrence statistics from the CUTLASS HF radars," Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, Vol. 15, No. 6, 703-718, 1997.        Google Scholar

7. Hall, G. E., J. W. MacDougall, D. R. Moorcroft, et al. "Super dual auroral radar network observations of meteor echoes," Journal of Geophysical Research-Space Physics, Vol. 102, No. A7, 14603-14614, 1997.
doi:10.1029/97JA00517        Google Scholar

8. Hussey, G. C., C. E. Meek, D. Andre, et al. "A comparison of Northern Hemisphere winds using SuperDARN meteor trail and MF radar wind measurements," Journal of Geophysical Research- Atmospheres, Vol. 105, No. D14, 18053-18066, 2000.
doi:10.1029/2000JD900272        Google Scholar

9. Hibbins, R. E., M. P. Freeman, S. E. Milan, and J. M. Ruohoniemi, "Winds and tides in the mid-latitude Southern Hemisphere upper mesosphere recorded with the Falkland Islands SuperDARN radar," Annales Geophysicae, Vol. 29, No. 11, 1985-1996, 2011.
doi:10.5194/angeo-29-1985-2011        Google Scholar

10. Baker, K. B. and R. A. Greenwald, "The vertical angle of arrival of highfrequency signals propagating from thule to goose bay," Johns Hopkins APL Technical Digest, Vol. 9, No. 2, 121-130, 1988.        Google Scholar

11. Chisham, G. and M. Pinnock, "Assessing the contamination of SuperDARN global convection maps by non-F-region backscatter," Annales Geophysicae, Vol. 20, No. 1, 13-28, 2002.
doi:10.5194/angeo-20-13-2002        Google Scholar

12. Andre, R., M. Pinnock, J. P. Villain, and C. Hanuise, "Influence of magnetospheric processes on winter HF radar spectra characteristics," Annales Geophysicae, Vol. 20, No. 11, 1783-1793, 2002.
doi:10.5194/angeo-20-1783-2002        Google Scholar

13. Blanchard, G. T., S. Sundeen, and K. B. Baker, "Probabilistic identification of high-frequency radar backscatter from the ground and ionosphere based on spectral characteristics," Radio Science, Vol. 44, No. 5, 1-9, 2009.
doi:10.1029/2009RS004141        Google Scholar

14. Berngardt, O. I., A. L. Voronov, and K. V. Grkovich, "Optimal signals of Golomb ruler class for spectral measurements at EKB SuperDARN radar: Theory and experiment," Radio Science, Vol. 50, No. 6, 486-500, 2015.
doi:10.1002/2014RS005589        Google Scholar

15. Barthes, L., R. Andre, J. C. Cerisier, and J.-P. Villain, "Separation of multiple echoes using a high-resolution spectral analysis for SuperDARN HF radars," Radio Science, Vol. 33, No. 4, 1005-1017, 1998.
doi:10.1029/98RS00714        Google Scholar

16. Liu, E. X., H. Q. Hu, R. Y. Liu, et al. "An adjusted location model for SuperDARN backscatter echoes," Annales Geophysicae, Vol. 30, No. 12, 1769-1779, 2012.
doi:10.5194/angeo-30-1769-2012        Google Scholar

17. Ribeiro, A. J., J. M. Ruohoniemi, J. B. H. Baker, et al. "A new approach for identifying ionospheric backscatter in midlatitude SuperDARN HF radar observations," Radio Science, Vol. 46, No. 4, 2011.
doi:10.1029/2011RS004676        Google Scholar

18. Lavygin, I. A., V. P. Lebedev, K. V. Grkovich, et al. "Identifying ground scatter and ionospheric scatter signals by using their ne structure at Ekaterinburg decameter coherent radar,", Cornell University Library, Ithaca, 2018.        Google Scholar

19. Matthews, D. M., M. L. Parkinson, P. L. Dyson, et al. "Optimising estimates of mesospheric neutral wind using the TIGER SuperDARN radar," Advances in Space Research, Vol. 38, No. 11, 2353-2360, 2006.
doi:10.1016/j.asr.2005.07.046        Google Scholar

20. Yukimatu, A. S. and M. Tsutsumi, "A new SuperDARN meteor wind measurement: Raw time series analysis method and its application to mesopause region dynamics," Geophysical Research Letters, Vol. 29, No. 20, 2002.
doi:10.1029/2002GL015210        Google Scholar

21. Tsutsumi, M., A. S. Yukimatu, D. A. Holdsworth, et al. "Advanced SuperDARN meteor wind observations based on raw time series analysis technique," Radio Science, Vol. 44, No. 2, 1-11, 2009.
doi:10.1029/2008RS003994        Google Scholar

22. Parris, R. T., "Design and implementation of a meteor tracking retro t system for the HF radar at Kodiak Island, Alaska,", 110, University of Alaska Fairbanks, Ann Arbor, 2003.        Google Scholar

23. Song, J., A. L. Lan, J. Y. Yan, et al. "Analysis of FPGA implementation for AgileDARN radar digital system," Remote Sensing Technology and Application, Vol. 32, No. 6, 1064-1070, 2017.        Google Scholar

24. Farley, D. T., "Multiple-pulse incoherent-scatter correlation function measurements," Radio Science, Vol. 7, No. 6, 661-666, 1972.
doi:10.1029/RS007i006p00661        Google Scholar

25. Hanuise, C., R. A. Greenwald, and K. B. Baker, "Drift motions of very high latitude F region irregularities: Azimuthal Doppler analysis," Journal of Geophysical Research, Vol. 90, No. A10, 1985.
doi:10.1029/JA090iA10p09717        Google Scholar

26. Baker, J. B., R. A. Greenwald, J. P. Villain, et al. "spectral characteristics of high frequency backscatter from high latitude ionospheric irregularities | Preliminary analysis of statistical properties," Interim Rep., RADC-TR-87-284, Rome Air Dev. Cent., Briffis Air Force Base, 1988.        Google Scholar

27. Cristianini, J. S.-T. N., An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000.
doi:10.1017/CBO9780511801389

28. Burges, C. J., "A tutorial on support vector machines for pattern recognition," Data Mining Knowledge Discovery, 1998.        Google Scholar