Vol. 107
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-10-26
A Hot-via Chip-to-Substrate Interconnect for Ultra-Compact System Package Application Up to W Band
By
Progress In Electromagnetics Research Letters, Vol. 107, 75-81, 2022
Abstract
A hot-via chip-to-substrate interconnect with its operation frequency up to W-band for ultracompact radio frequency (RF) system in package (SIP) is reported in this paper. In order to improve the accuracy of the simulation model in millimeter wave bands, a trapezoidal platform model is established for modeling the RF performance of the hot-via which is formed by inductively coupled plasma (ICP) etching process. A three hot-vias structure in a gallium arsenide (GaAs) chip is employed to form a Ground-Signal-Ground (GSG) transition structure. Bumps on the Silicon substrate are designed as a half quasi-coaxial structure to make it compatible with the assembly process of SIP. A full-wave simulation model is established for a hot-via chip-to-substrate interconnect structure with HFSS, based on which structural parameters, such as the gap between the hot-vias and the radius of the quasi-coaxial structure, are optimized for the best performance over 92-96 GHz. A prototype of the hot-via chip-to-substrate interconnects in their back-to-back connected form has been fabricated. Measured results demonstrate that the overall insertion loss is less than 1.85 dB, and the return loss is better than 12 dB from 92 GHz to 96 GHz.
Citation
Jiapeng Yang, Bingqing Zou, Jinping Xu, and Jun Zhou, "A Hot-via Chip-to-Substrate Interconnect for Ultra-Compact System Package Application Up to W Band," Progress In Electromagnetics Research Letters, Vol. 107, 75-81, 2022.
doi:10.2528/PIERL22020201
References

1. Liu, G., A. Trasser, A. Ulusoy, and H. Schumacher, "Low-loss, low-cost, IC-to-board bondwire interconnects for millimeter-wave applications," 2011 IEEE MTT-S International Microwave Symposium, 1-1, 2011.

2. Schulz, A., D. Stöpel, T. Welker, R. Müller, F. Wollenschläger, and J. Müller, "Optimized wire-bond transitions for microwave applications up to 67 GHz using the low loss LTCC material DuPont 9k7," 2013 Eurpoean Microelectronics Packaging Conference (EMPC), 1-5, 2013.

3. Wu, W. C., L. H. Hsu, E. Y. Chang, et al. "60 GHz broadband MS-to-CPW hot-via flip chip interconnects," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 11, 784-786, 2007.
doi:10.1109/LMWC.2007.908053

4. Zhou, J., J. Yang, and Y. Shen, "3D heterogeneous integration technology using hot via MMIC and silicon interposer with millimeter wave application," 2017 IEEE/MTT-S International Microwave Symposium --- IMS, 499-502, 2017.
doi:10.1109/MWSYM.2017.8058608

5. Mahon, J. C., M. Clark, and P. Katzin, "A surface mount 45 to 90 GHz low noise amplifier using novel hot-via interconnection," 2018 IEEE/MTT-S International Microwave Symposium --- IMS, 293-296, 2018.
doi:10.1109/MWSYM.2018.8439302

6. Chiu, J. C., S. C. Hsiao, P. K. Tseng, et al. "An ultracompact, low-cost, and high-performance RF package technique for Wi-Fi FEM applications," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 3, 265-267, 2020.
doi:10.1109/LMWC.2020.2971389