Vol. 103
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-04-15
Dual-Band SIW Slot Array Filtering Antenna for X and Ku Band Applications
By
Progress In Electromagnetics Research Letters, Vol. 103, 109-117, 2022
Abstract
In this work, a substrate integrated waveguide slot array filtering antenna for dual band applications is presented. This novel design performs the functions of both a filter and an antenna simultaneously. The main intention of this work is to design a circuit that separates the frequencies in a dual band operation. The antenna is designed as an integration of two parts; the upper part operates at 10.2 GHz while the lower part operates at 16.4 GHz. In each part, an array of five longitudinal slots is incorporated, as well as a SIW antenna with complementary split ring resonators that operate as a band pass filter at the front end. Each slot array antenna is designed for a specific frequency band, and its function depends upon its preceding band pass filter. The two band pass filters allow only signals from the frequency bands for which they are designed, to their corresponding slot array antennas. This technique, along with properly spaced metal vias of the SIW antenna, prevents any leakage and hence reduces interference in dual band operation. Both the band pass filter and the antenna can be built on the same planar board. The antenna is fed through a microstrip to SIW taper transition. CST Microwave Studio software is used for optimization and simulation of the structure. The antenna was built on an RT Duroid 5880 and tested to investigate practical validation. The antenna has a bandwidth of 1.9 GHz, from 9.2 GHz to 11.1 GHz in the X-band, and 2.2 GHz, from 15.6 GHz to 16.9 GHz in the Ku band. The gain pattern is unidirectional in nature and has low side lobe levels of -24 dB and -21 dB at resonant frequencies. A noticeable difference that is greater than 20 dB between co-polarization and cross-polarization is observed. The dimensions of the antenna are 56 mm x 32 mm x 0.508 mm. There is an excellent similarity between the simulated and measured results.
Citation
Ayyadevara Murali Maruti, and Bhavan S. Naga Kishore, "Dual-Band SIW Slot Array Filtering Antenna for X and Ku Band Applications," Progress In Electromagnetics Research Letters, Vol. 103, 109-117, 2022.
doi:10.2528/PIERL22020306
References

1. Mao, C. X., Y. Zhang, X. Y. Zhang, P. Xiao, Y. Wang, and S. Gao, "Filtering antennas: Design methods and recent developments," IEEE Microwave Magazine, Vol. 22, No. 11, 52-63, 2021.
doi:10.1109/MMM.2021.3102199

2. Liang, G.-Z., F.-C. Chen, H. Yuan, K.-R. Xiang, and Q.-X. Chu, "A high selectivity and high efficiency filtering antenna with controllable radiation nulls based on stacked patches," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 1, 708-713, 2022.
doi:10.1109/TAP.2021.3098563

3. Zhang, Y.-M., S. Zhang, G. Yang, and G. F. Pedersen, "A wideband filtering antenna array with harmonic suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 10, 4327-4339, 2020.
doi:10.1109/TMTT.2020.2993307

4. Dng, C. F., Z. Y. Zhang, and M. Yu, "Simple dual-polarized filtering antenna with enhanced bandwidth for base station applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4354-4361, 2020.
doi:10.1109/TAP.2020.2975282

5. Yang, S. J., Y. M. Pan, L.-Y. Shi, and Z. Y. Zhang, "Millimeter-wave dual-polarized filtering antenna for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5114-5121, 2020.
doi:10.1109/TAP.2020.2975534

6. Wang, H.-Y., G. Zhao, R.-Y. Li, and Y.-C. Jiao, "A low-profile half-mode substrate integrated waveguide filtering antenna with high frequency selectivity," Progress In Electromagnetics Research Letters, Vol. 99, 35-43, 2021.

7. Xie, H. Y., B. Wu, Y.-L. Wang, C. Fan, J.-Z. Chen, and T. Su, "Wideband SIW filtering antenna with controllable radiation nulls using dual-mode cavities," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 9, 1799-1803, 2021.
doi:10.1109/LAWP.2021.3097214

8. Hua, C., X. Jin, and M. Liu, "Design of compact vertically stacked SIW end-fire filtering antennas with transmission zeros," Progress In Electromagnetics Research Letters, Vol. 87, 67-73, 2019.
doi:10.2528/PIERL19072205

9. Altaf, A., W. Abbas, and M. Seo, "A wideband SIW-based slot antenna for D-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 10, 1868-1872, 2021.
doi:10.1109/LAWP.2021.3097395

10. Diman, A. A., et al. "Efficient SIW-feed network suppressing mutual coupling of slot antenna array," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 6058-6063, 2021.
doi:10.1109/TAP.2021.3069557

11. Zheng, D., Y.-L. Lyu, and K. Wu, "Longitudinally slotted SIW leaky-wave antenna for low cross-polarization millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 656-664, 2020.
doi:10.1109/TAP.2019.2940469

12. El Misilmani, H. M., M. Al-Husseini, and K. Y. Kabalan, "Design of slotted waveguide antennas with low sidelobes for high power microwave applications," Progress In Electromagnetics Research C, Vol. 56, 15-28, 2015.
doi:10.2528/PIERC14121903

13. Kachhia, J., A. Patel, A. Vala, R. Patel, and K. Mahant, "Logarithmic slots antennas using substrate integrated waveguide," International Journal of Microwave Science and Technology, Vol. 2015, 1-11, 2015.
doi:10.1155/2015/629797

14. Farrall, A. J. and P. R. Young, "Integrated waveguide slot antennas," IEEE Electronics Letters, Vol. 40, 974-975, 2004.
doi:10.1049/el:20045505

15. Zamzam, K. and J. Bornemann, "New wideband transition from microstrip line to substrate integrated wave guide," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 12, 2983-2989, 2014.
doi:10.1109/TMTT.2014.2365794

16. Fu, W., Z. Li, P. Liu, J. Cheng, and X. Qiu, "Modeling and analysis of novel CSRRs-loaded dual-band band pass SIW filters," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, No. 7, 2352-2356, 2021.
doi:10.1109/TCSII.2021.3052574

17. Soundarya, G. and N. Gunavathi, "Compact dual-band SIW band pass filter using CSRR and DGS structure resonators," Progress In Electromagnetics Research Letters, Vol. 101, 79-87, 2021.
doi:10.2528/PIERL21091301

18. Rayala, R. K. and S. Raghavan, "Arti cial neural network based SIW band pass filter design using complementary split ring resonators," Progress In Electromagnetics Research C, Vol. 115, 277-289, 2021.
doi:10.2528/PIERC21072305