Vol. 106
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-08-17
Metamaterial Perfect Absorber Using Vanadium Oxide Hexagonal Ring Structure
By
Progress In Electromagnetics Research Letters, Vol. 106, 15-20, 2022
Abstract
A Metamaterial Terahertz perfect absorber is proposed in this letter. The structure comprises Vanadium oxide (VO2) resonator hexagonal rings placed on top of a silicon dioxide (SiO2) substrate in a concentric pattern on a metal ground layer, with 1 THz and 6 THz operating frequency. Numerical studies are done by an electromagnetic solver. The results show almost perfect absorption, with 112% average absorption at different incident polarization angles, in the range of 1.64 to 6.1 THz. The optimization is carried out on physical dimensions for maximum absorption results. The proposed design can be used as a highly efficient absorber in applications like solar energy harvesting, cloaking, sensing, imaging technology, and EMC projects.
Citation
Mekala Ananda Reddy, Namanathan Praveena, Nagarajan Gunavathi, and Ramasamy Pandeeswari, "Metamaterial Perfect Absorber Using Vanadium Oxide Hexagonal Ring Structure," Progress In Electromagnetics Research Letters, Vol. 106, 15-20, 2022.
doi:10.2528/PIERL22062003
References

1. Heinz-Wilhelm, H., "Terahertz technology: Towards THz integrated photonics," Nat. Photon., Vol. 4, 503-504, 2010.
doi:10.1038/nphoton.2010.169

2. Siegel, P. H., "Terahertz technology in biology and medicine," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 10, 2438-2447, 2004.
doi:10.1109/TMTT.2004.835916

3. Jansen, C., S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, "Terahertz imaging: Applications and perspectives," Applied Optics, Vol. 49, No. 19, E48-E57, 2010.
doi:10.1364/AO.49.000E48

4. Wanke, M. C., E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, "Monolithically integrated solid-state terahertz transceivers," Nature Photonics, Vol. 4, No. 8, 565-569, 2010.
doi:10.1038/nphoton.2010.137

5. Chen, T., D. Liang, and W. Jiang, "A tunable terahertz graphene metamaterial sensor based on dual polarized plasmon-induced transparency," IEEE Sensors Journal, 2022.

6. Cen, W., T. Lang, Z. Hong, J. Liu, M. Xiao, J. Zhang, and Z. Yu, "Ultrasensitive flexible terahertz plasmonic metasurface sensor based on bound states in the continuum," IEEE Sensors Journal, 2022.

7. Shan, Y., L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, "Ultrathin flexible dual band terahertz absorber," Optics Communications, Vol. 350, 63-70, 2015, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0030401815002734.
doi:10.1016/j.optcom.2015.03.072

8. Al-Badri, K. S. L., Y. I. Abdulkarim, F. Özkan Alkurt, and M. Karaaslan, "Simulated and experimental verification of the microwave dual-band metamaterial perfect absorber based on square patch with a 450 diagonal slot structure," Journal of Electro- magnetic Waves and Applications, Vol. 35, No. 11, 1541-1552, 2021, [Online]. Available: https://doi.org/10.1080/09205071.2021.1905560.
doi:10.1080/09205071.2021.1905560

9. Abdulkarim, Y. I., F. F. Muhammadsharif, M. Bakr, H. N. Awl, M. Karaaslan, L. Deng, and S. Huang, "Hypersensitized metamaterials based on a corona-shaped resonator for efficient detection of glucose," Applied Sciences, Vol. 11, No. 1, 2021, [Online]. Available: https://www.mdpi.com/2076-3417/11/1/103.

10. Abdulkarim, Y. I., L.-W. Deng, J.-L. Yang, Ş. Colak, M. Karaaslan, S.-X. Huang, L.-H. He, and H. Luo, "Tunable left-hand characteristics in multi-nested square-split-ring enabled metamaterials," Journal of Central South University, Vol. 27, No. 4, 1235-1246, Apr. 2020, [Online]. Available: https://doi.org/10.1007/s11771-020-4363-5.
doi:10.1007/s11771-020-4363-5

11. Xu, Z. and Z. Song, "VO2-based switchable metasurface with broadband photonic spin hall effect and absorption," IEEE Photonics Journal, Vol. 13, No. 4, 1-5, 2021.

12. Ren, Y. and B. Tang, "Switchable multi-functional VO2-integrated metamaterial devices in the terahertz region," Journal of Lightwave Technology, Vol. 39, No. 18, 5864-5868, 2021.
doi:10.1109/JLT.2021.3092952

13. Zhang, Y., P. Wu, Z. Zhou, X. Chen, Z. Yi, J. Zhu, T. Zhang, and H. Jile, "Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide," IEEE Access, Vol. 8, 85154-85161, 2020.
doi:10.1109/ACCESS.2020.2992700

14. Liu, M., H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G.West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, "Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial," Nature, Vol. 487, No. 7407, 345-348, Jul. 2012, [Online]. Available: https://doi.org/10.1038/nature11231.
doi:10.1038/nature11231

15. Song, Z., K.Wang, J. Li, and Q. H. Liu, "Broadband tunable terahertz absorber based on vanadium dioxide metamaterials," Opt. Express, Vol. 26, No. 6, 7148-7154, Mar. 2018, [Online]. Available: http://opg.optica.org/oe/abstract.cfm?URI=oe-26-6-7148.
doi:10.1364/OE.26.007148

16. Wang, S., C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, "Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: Simulation study," Opt. Express, Vol. 27, No. 14, 19436-19447, Jul. 2019, [Online]. Available: http://opg.optica.org/oe/abstract.cfm?URI=oe-27-14-19436.
doi:10.1364/OE.27.019436

17. Song, Z., M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, "Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces," IEEE Photonics Journal, Vol. 11, No. 2, 1-7, 2019.

18. Bai, J., S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, and S. Chang, "Tunable broadband THz absorber using vanadium dioxide metamaterials," Optics Communications, Vol. 452, 292-295, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0030401819306492.
doi:10.1016/j.optcom.2019.07.057

19. Dao, R.-N., X.-R. Kong, H.-F. Zhang, and X.-R. Su, "A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide," Optik, Vol. 180, 619-625, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0030402618319284.
doi:10.1016/j.ijleo.2018.12.004

20. Song, Z., M. Jiang, Y. Deng, and A. Chen, "Wide-angle absorber with tunable intensity and band-width realized by a terahertz phase change material," Optics Communications, Vol. 464, 125494, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0030401820301346.
doi:10.1016/j.optcom.2020.125494

21. Huang, J., J. Li, Y. Yang, J. Li, J. li, Y. Zhang, and J. Yao, "Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide," Opt. Express, Vol. 28, No. 5, 7018-7027, Mar. 2020. [Online]. Available: http://opg.optica.org/oe/abstract.cfm?URI=oe-28-5-7018.
doi:10.1364/OE.387156