1. Heinz-Wilhelm, H., "Terahertz technology: Towards THz integrated photonics," Nat. Photon., Vol. 4, 503-504, 2010.
doi:10.1038/nphoton.2010.169
2. Siegel, P. H., "Terahertz technology in biology and medicine," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 10, 2438-2447, 2004.
doi:10.1109/TMTT.2004.835916
3. Jansen, C., S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, "Terahertz imaging: Applications and perspectives," Applied Optics, Vol. 49, No. 19, E48-E57, 2010.
doi:10.1364/AO.49.000E48
4. Wanke, M. C., E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, "Monolithically integrated solid-state terahertz transceivers," Nature Photonics, Vol. 4, No. 8, 565-569, 2010.
doi:10.1038/nphoton.2010.137
5. Chen, T., D. Liang, and W. Jiang, "A tunable terahertz graphene metamaterial sensor based on dual polarized plasmon-induced transparency," IEEE Sensors Journal, 2022.
6. Cen, W., T. Lang, Z. Hong, J. Liu, M. Xiao, J. Zhang, and Z. Yu, "Ultrasensitive flexible terahertz plasmonic metasurface sensor based on bound states in the continuum," IEEE Sensors Journal, 2022.
7. Shan, Y., L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, "Ultrathin flexible dual band terahertz absorber," Optics Communications, Vol. 350, 63-70, 2015, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0030401815002734.
doi:10.1016/j.optcom.2015.03.072
8. Al-Badri, K. S. L., Y. I. Abdulkarim, F. Özkan Alkurt, and M. Karaaslan, "Simulated and experimental verification of the microwave dual-band metamaterial perfect absorber based on square patch with a 450 diagonal slot structure," Journal of Electro- magnetic Waves and Applications, Vol. 35, No. 11, 1541-1552, 2021, [Online]. Available: https://doi.org/10.1080/09205071.2021.1905560.
doi:10.1080/09205071.2021.1905560
9. Abdulkarim, Y. I., F. F. Muhammadsharif, M. Bakr, H. N. Awl, M. Karaaslan, L. Deng, and S. Huang, "Hypersensitized metamaterials based on a corona-shaped resonator for efficient detection of glucose," Applied Sciences, Vol. 11, No. 1, 2021, [Online]. Available: https://www.mdpi.com/2076-3417/11/1/103.
10. Abdulkarim, Y. I., L.-W. Deng, J.-L. Yang, Ş. Colak, M. Karaaslan, S.-X. Huang, L.-H. He, and H. Luo, "Tunable left-hand characteristics in multi-nested square-split-ring enabled metamaterials," Journal of Central South University, Vol. 27, No. 4, 1235-1246, Apr. 2020, [Online]. Available: https://doi.org/10.1007/s11771-020-4363-5.
doi:10.1007/s11771-020-4363-5
11. Xu, Z. and Z. Song, "VO2-based switchable metasurface with broadband photonic spin hall effect and absorption," IEEE Photonics Journal, Vol. 13, No. 4, 1-5, 2021.
12. Ren, Y. and B. Tang, "Switchable multi-functional VO2-integrated metamaterial devices in the terahertz region," Journal of Lightwave Technology, Vol. 39, No. 18, 5864-5868, 2021.
doi:10.1109/JLT.2021.3092952
13. Zhang, Y., P. Wu, Z. Zhou, X. Chen, Z. Yi, J. Zhu, T. Zhang, and H. Jile, "Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide," IEEE Access, Vol. 8, 85154-85161, 2020.
doi:10.1109/ACCESS.2020.2992700
14. Liu, M., H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G.West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, "Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial," Nature, Vol. 487, No. 7407, 345-348, Jul. 2012, [Online]. Available: https://doi.org/10.1038/nature11231.
doi:10.1038/nature11231
15. Song, Z., K.Wang, J. Li, and Q. H. Liu, "Broadband tunable terahertz absorber based on vanadium dioxide metamaterials," Opt. Express, Vol. 26, No. 6, 7148-7154, Mar. 2018, [Online]. Available: http://opg.optica.org/oe/abstract.cfm?URI=oe-26-6-7148.
doi:10.1364/OE.26.007148
16. Wang, S., C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, "Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: Simulation study," Opt. Express, Vol. 27, No. 14, 19436-19447, Jul. 2019, [Online]. Available: http://opg.optica.org/oe/abstract.cfm?URI=oe-27-14-19436.
doi:10.1364/OE.27.019436
17. Song, Z., M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, "Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces," IEEE Photonics Journal, Vol. 11, No. 2, 1-7, 2019.
18. Bai, J., S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, and S. Chang, "Tunable broadband THz absorber using vanadium dioxide metamaterials," Optics Communications, Vol. 452, 292-295, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0030401819306492.
doi:10.1016/j.optcom.2019.07.057
19. Dao, R.-N., X.-R. Kong, H.-F. Zhang, and X.-R. Su, "A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide," Optik, Vol. 180, 619-625, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0030402618319284.
doi:10.1016/j.ijleo.2018.12.004
20. Song, Z., M. Jiang, Y. Deng, and A. Chen, "Wide-angle absorber with tunable intensity and band-width realized by a terahertz phase change material," Optics Communications, Vol. 464, 125494, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0030401820301346.
doi:10.1016/j.optcom.2020.125494
21. Huang, J., J. Li, Y. Yang, J. Li, J. li, Y. Zhang, and J. Yao, "Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide," Opt. Express, Vol. 28, No. 5, 7018-7027, Mar. 2020. [Online]. Available: http://opg.optica.org/oe/abstract.cfm?URI=oe-28-5-7018.
doi:10.1364/OE.387156