Vol. 106
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-09-01
Miniaturized Lumped-Element LTCC Quadrature Hybrid with LC Stacked Structure
By
Progress In Electromagnetics Research Letters, Vol. 106, 75-80, 2022
Abstract
A miniaturized lumped-element quadrature hybrid with a high density stacked structure is proposed in a 24-layer low temperature co-fired ceramic (LTCC) substrate. Stacking vertical-interdigital-capacitors (VICs) and vertically-spiral-inductors are for an entire size reduction. The transition between inductors realized in the inner space of the inductor further improves the utilization of three-dimensional space. The overall size of the quadrature hybrid is only 10.1×3.8×2.4 mm, or equivalently 0.0040×0.0015×0.0009λg3, which achieves a size reduction of 30.2%. Meanwhile, the proposed hybrid operates at 60 MHz with a fractional bandwidth (FBW) of 33.3%. The measured S11, S21, S31 and S41 are -14.5, -3.8, -3.7, and -14.2 dB within the operating frequency band, respectively, and both of the low phase imbalance and amplitude imbalance are achieved.
Citation
Jixi Lu, Jiyi Bian, and Bo Zhou, "Miniaturized Lumped-Element LTCC Quadrature Hybrid with LC Stacked Structure," Progress In Electromagnetics Research Letters, Vol. 106, 75-80, 2022.
doi:10.2528/PIERL22070403
References

1. Velidi, V. K., A. V. G. Subramanyam, and V. V. Srinivasan, "Improved bandwidth via-free lumped- element quadrature hybrid couplers," IEEE International Microwave and RF Conference (IMaRC), 229-232, 2014.
doi:10.1109/IMaRC.2014.7039014

2. Chen, J.-H., S.-Y. Yuan, S.-R. Liou, and S.-S. Liao, "Compact planar microstrip branch-line coupler using equal difference," Microwave and Optical Technology Letters, Vol. 59, No. 13, 664-668, 2017.
doi:10.1002/mop.30364

3. Idury, S. K., R. K. Barik, S. S. Karthikeyan, and P. Kokil, "A miniaturized harmonic suppressed 3 dB branch line coupler using Hshapedmicrostrip line," Microwave and Optical Technology Letters, Vol. 59, No. 4, 913-918, 2017.
doi:10.1002/mop.30428

4. Wang, Y., X. Y. Zhang, F. X. Liu, C. H. Quan, and J. C. Lee, "A miniaturized rat-race coupler with ultra-wideband harmonic suppression," Microwave and Optical Technology Letters, Vol. 60, 1960-1963, 2018.
doi:10.1002/mop.31283

5. Bekasiewicz, A., "Miniaturized dual-band branch-line coupler with enhanced bandwidth," Microwave and Optical Technology Letters, Vol. 61, 1441-1444, 2019.
doi:10.1002/mop.31849

6. Tayebi, A. and D. Zarifi, "On the miniaturization of microstrip ring-hybrid couplers using Gielis supershapes," IETE J. Res., 1-6, Dec. 2020.
doi:10.1080/03772063.2020.1859955

7. Zhou, B., W. Sheng, and Y. Zheng, "Miniaturized and wideband lumped LTCC branch-line coupler for dozens of megahertz applications," Microwave and Optical Technology Letters, Vol. 56, No. 9, 2001-2005, 2014.
doi:10.1002/mop.28548

8. MWO, Microwave Office, , Applied Wave Research Corporation, El Segundo, CA.