Vol. 106
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-09-19
Research on Identifying Life States by Analyzing Physiological Raw of Rabbits Under Typical Post-Disaster Rescues
By
Progress In Electromagnetics Research Letters, Vol. 106, 135-143, 2022
Abstract
Contactless identifying different life states can result in improved rescue strategies in post-disaster rescues (such as earthquake and mine accident). If the buried targets are identified extremely endangered with very poor life states, the rescuing principles should be time first. Conversely, if the life states of the buried targets are relatively good, more reliable and safer methods should be given priority although they may cost a little more time. Unfortunately, there are few corresponding reports in life states identification, and current researches mainly focus on detecting or locating under penetration condition. This paper conducts a research on the change laws of physiological parameters of six New Zealand white rabbits, 3 females and 3 males. Experimental condition is under water and food deprivation to simulate one of the typical trapped situations of buried targets in post-disaster rescuing missions. Respiration is synchronously detected by an ultra-wideband (UWB) system in non-contact and an RM6240E system in contact. Heart rate, weight, and anal temperature are measured in contact measurement meanwhile. Over the time under water and food deprivation condition, there are typical and regular varieties in the respiration waveforms and heart rate values, which provide the possibility to identify different life states. Particularly, the respiration waveform changes in UWB radar signals are envisioned to be applied in practical post-disaster rescue where only UWB radar can penetrate ruins through penetrating measurement method.
Citation
Zhao Li, Yangyang Ma, Fu Gui Qi, Fulai Liang, Xiao Yu, Yang Zhang, Jianqi Wang, and Guohua Lu, "Research on Identifying Life States by Analyzing Physiological Raw of Rabbits Under Typical Post-Disaster Rescues," Progress In Electromagnetics Research Letters, Vol. 106, 135-143, 2022.
doi:10.2528/PIERL22071104
References

1. Li, C. and J. Lin, Microwave Noncontact Motion Sensing and Analysis, John Wiley & Sons Press, 2014.

2. Zhang, Y., F. Qi, H. Lv, F. Liang, and J. Wang, "Bioradar technology: Recent research and advancements," IEEE Microwave Magazine, Vol. 20, 58-73, 2019.
doi:10.1109/MMM.2019.2915491

3. Hong, H., L. Zhang, H. Zhao, H. Chu, C. Gu, M. Brown, X. Zhu, and C. Li, "Microwave sensing and sleep: Noncontact sleep-monitoring technology with microwave biomedical radar," IEEE Microwave Magazine, Vol. 20, No. 8, 18-29, 2019.
doi:10.1109/MMM.2019.2915469

4. Qi, F., H. Lv, J. Wang, and A. Fathy, "Quantitative evaluation of channel micro-Doppler capacity for MIMO UWB radar human activity signals based on time-frequency signatures," IEEE Transactions on Geoscience and Remote Sensing, 1-14, 2020.

5. Ren, N., X. Quan, and S. H. Cho, "Algorithm for gesture recognition using an IR-UWB radar sensor," Journal of Computational Chemistry, Vol. 4, No. 3, 95-100, 2016.

6. Ren, L., T. Nghia, F. Foroughian, K. Naishadham, J. Piou, O. Kilic, and A. Fathy, "Short-time state-space method for micro-doppler identification of walking subject using UWB impulse doppler radar," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 7, 3521-3534, 2018.
doi:10.1109/TMTT.2018.2829523

7. Kidera, S., T. Sakamoto, and T. Sato, "Accurate UWB radar three-dimensional imaging algorithm for a complex boundary without range point connections," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 4, 1993-2004, 2010.
doi:10.1109/TGRS.2009.2036909

8. Narayanan, R. M., "Through-wall radar imaging using UWB noise waveforms," Journal of the Franklin Institute, Vol. 345, No. 6, 659-678, 2008.
doi:10.1016/j.jfranklin.2008.03.004

9. Donelli, M., "A rescue radar system for the detection of victims trapped under rubble based on the independent component analysis algorithm," Progress In Electromagnetics Research Letters, Vol. 19, 173-181, 2011.
doi:10.2528/PIERM11061206

10. Donelli, M. and F. Viani, "Life signals detection system based on a continuous-wave X-band radar," Electronics Letters, Vol. 52, No. 23, 1903-1904, 2016.
doi:10.1049/el.2016.2902

11. Bao, R., Z. Yang, Y. Cheng, and H. Liu, "Short-range moving human detection based-on cascaded spatial-temporal three-stages detector in UWB radar," International Conference on Signal Processing, Copenhagen, Denmark, April 2019.

12. Ma, Y., F. Liang, P. Wang, H. Lv, X. Yu, Y. Zhang, and J. Wang, "An accurate method to distinguish between stationary human and dog targets under through-wall condition using UWB radar," Remote Sensing, Vol. 11, No. 21, 2571, 2019.
doi:10.3390/rs11212571

13. Ma, Y., F. Qi, P. Wang, F. Liang, H. Lv, X. Yu, Z. Li, H. Xue, J. Wang, and Y. Zhang, "Multiscale residual attention network for distinguishing stationary humans and common animals under through-wall condition using ultra-wideband radar," IEEE Access, 99, 2020.

14. Phinikaridou, A., K. Hallock, Y. Qiao, and J. Hamilton, "A robust rabbit model of human atherosclerosis and atherothrombosis," J. Lipid Res., Vol. 50, No. 5, 787-797, 2009.
doi:10.1194/jlr.M800460-JLR200

15. Wang, Y., "Study on the technology of distinguishing between humans and animals via UWB bio-radar,", Ph.D. Thesis, The Fourth Military Medical University, Xi'an, Shaanxi, China, 2014.

16. Li, Z., W. Li, H. Lv, Y. Zhang, X. Jing, and J. Wang, "A novel method for respiration-like clutter cancellation in life detection by dual-frequency IR-UWB radar," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 2086-2092, 2013.
doi:10.1109/TMTT.2013.2247054