Vol. 97
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-10-25
A UWB Dual Band-Notched on-Chip Antenna and Its Equivalent Circuit Model
By
Progress In Electromagnetics Research B, Vol. 97, 19-35, 2022
Abstract
This paper presents a CPW-fed, UWB-extended bandwidth, dual band-notched on-chip antenna with its equivalent circuit model. The UWB-extended bandwidth is realized by truncating the bottom corners of a rectangular patch radiator while a 90º-rotated `C'-shaped slot in the patch and a `U'-shaped slot in the feedline are used to achieve two notch bands for mitigating the signal interference in the frequency bands of 5.15 to 5.925 GHz and 7.9 to 8.8 GHz. Based on the fundamental theory, different parasitic as well as distributed circuit parameters associated with the designed on-chip antenna are extracted, and then the corresponding equivalent circuit model is configured from them. The resultant circuit is validated with the well approved full-wave electromagnetic simulation result and is found in close approximation with each other.
Citation
Sanjukta Mandal, Sujit Kumar Mandal, Ashis Kumar Mal, and Rajat Mahapatra, "A UWB Dual Band-Notched on-Chip Antenna and Its Equivalent Circuit Model," Progress In Electromagnetics Research B, Vol. 97, 19-35, 2022.
doi:10.2528/PIERB22072602
References

1. Serrano, R., et al. "A low-power low-area SoC based in RISC-V processor for IoT applications," 2021 18th International SoC Design Conference (ISOCC), 375-376, Jeju Island, Republic of Korea, 2021.        Google Scholar

2. Winkler, V., R. Feger, and L. Maurer, "79 GHz automotive short range radar sensor based on single-chip SiGe-transceivers," 2008 European Radar Conference, 459-462, Amsterdam, 2008.        Google Scholar

3. Floyd, B. A., C. M. Hung, and K. O. Kenneth, "Intra-chip wireless interconnect for clock distribution implemented with integrated antennas, receivers, and transmitters," IEEE J. Solid State Circuits, Vol. 37, No. 5, 543-552, 2002.
doi:10.1109/4.997846        Google Scholar

4. Grzyb, J., P. R. Vazquez, N. Sarmah, W. Förster, B. Heinemann, and U. Pfeiffer, "High data-rate communication link at 240 GHz with on-chip antenna-integrated transmitter and receiver modules in SiGe HBT technology," 2017 11th European Conference on Antennas and Propagation (EUCAP), 1369-1373, PParis, 2017.
doi:10.23919/EuCAP.2017.7928160        Google Scholar

5. Nouri, A. and G. R. Dadashzadeh, "A compact UWB band-notched printed monopole antenna with defected ground structure," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1178-1181, 2011.
doi:10.1109/LAWP.2011.2171312        Google Scholar

6. Pancera, E., D. Modotto, A. Locatelli, F. M. Pigozzo, and C. De Angelis, "Novel design of UWB antenna with band-notch capability," IEEE Wireless Technol. Conf., 48-50, 2007.        Google Scholar

7. Cho, Y. J., K. H. Kim, D. H. Choi, S. S. Lee, and S. Park, "A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 5, 1453-1460, May 2006.
doi:10.1109/TAP.2006.874354        Google Scholar

8. Chattha, H. T., M. K. Ishfaq, Y. Saleem, Y. Huang, and S. J. Boyes, "Band-notched ultrawide band planar inverted-F antenna," International Journal of Antennas and Propagation, Vol. 2012, Article ID 513829, 6 pages, 2012.        Google Scholar

9. Lee, H. K., J. K. Park, and J. N. Lee, "Design of a planar half-circle-shaped UWB notch antenna," Microwave Opt. Technol. Lett., Vol. 47, No. 1, 9-11, Oct. 2005.
doi:10.1002/mop.21065        Google Scholar

10. Lee, J. N. and J. K. Park, "Impedance characteristics of trapezoidal ultra-wideband antennas with a notch function," Microwave Opt. Technol. Lett., Vol. 46, No. 5, 503-506, Sep. 2005.
doi:10.1002/mop.21029        Google Scholar

11. Sahoo, M., S. Pattnaik, and S. Sahu, "Design of compact UWB hexagonal monopole antenna with frequency notch characteristics," International Conference on Circuits, Power and Computing Technologies (ICCPCT-2015), 1-4, Nagercoil, 2015.        Google Scholar

12. Abdollahvand, M., G. R. Dadashzadeh, and H. Ebrahimian, "Compact band-rejection printed monopole antenna for UWB application," IEICE Electron. Exp., Vol. 8, No. 7, 423-428, Apr. 2011.
doi:10.1587/elex.8.423        Google Scholar

13. Islam, M. T., R. Azim, and A. T. Mobashsher, "Triple band-notched planar UWB antenna using parasitic strips," Progress In Electromagnetics Research, Vol. 129, 161-179, 2012.
doi:10.2528/PIER12032604        Google Scholar

14. Tang, M.-C., S. Xiao, T. Deng, D. Wang, J. Guan, B. Wang, and G.-D. Ge, "Compact UWB antenna with multiple band notches for WiMAX and WLAN," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1372-1376, 2011.
doi:10.1109/TAP.2011.2109684        Google Scholar

15. Lin, C., P. Jin, and R. W. Ziolkowski, "Single, dual and tri-band-notched Ultrawideband (UWB) antennas using Capacitively Loaded Loop (CLL) resonators," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 102-109, Jan. 2012.
doi:10.1109/TAP.2011.2167947        Google Scholar

16. Modirkhazeni, A., P. Rezaei, and I. A. Lafmajani, "Compact UWB antennas with inverted E- and F-shaped slots for bandnotch characteristics," Progress In Electromagnetics Research Letters, Vol. 56, 107-113, 2015.
doi:10.2528/PIERL15071403        Google Scholar

17. Karmakar, A., S. Verma, M. Pal, and R. Ghatak, "An ultrawideband monopole antenna with multiple fractal slots with dual band rejection characteristic," Progress In Electromagnetics Research C, Vol. 31, 185-197, 2012.
doi:10.2528/PIERC12052310        Google Scholar

18. Biswas, B., R. Ghatak, A. Karmakar, and D. R. Poddar, "Dual band notched UWB monopole antenna using embedded omega slot and fractal shaped ground plane," Progress In Electromagnetics Research C, Vol. 53, 177-186, 2014.
doi:10.2528/PIERC14070701        Google Scholar

19. Cai, Y. Z., H. C Yang, and L. Y. Cai, "Wideband monopole antenna with three band-notched characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 607-610, 2014.        Google Scholar

20. Mewara, H. S., D. J. Mahendra M. Sharma, and J. K. Deegwal, "A printed monopole ellipzoidal UWB antenna with four band rejection characteristics," AEU --- International Journal of Electronics and Communications, Vol. 83, 222-232, 2018.
doi:10.1016/j.aeue.2017.08.043        Google Scholar

21. Wu, Z.-H., F. Wei, X.-W. Shi, and W.-T. Li, "A compact quad band-notched UWB monopole antenna loaded one lateral L-shaped slot," Progress In Electromagnetics Research, Vol. 139, 303-315, 2013.
doi:10.2528/PIER13022714        Google Scholar

22. Porcino, D. and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Communications Magazine, Vol. 41, No. 7, 66-74, Jul. 2003.
doi:10.1109/MCOM.2003.1215641        Google Scholar

23. Ojaroudi, M., C. Ghobadi, and J. Nourinia, "Small square monopole antenna with inverted T-shaped notch in the ground plane for UWB application," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 728-731, 2009.
doi:10.1109/LAWP.2009.2025972        Google Scholar

24. Ojaroudi, N., M. Ojaroudi, and S. Amir, "Compact UWB microstrip antenna with satellite down-link frequency rejection in X-band communications by etching an E-shaped step-impedance resonator slot," Microwave and Optical Technology Letters, Vol. 55, No. 4, 922-926, 2013.
doi:10.1002/mop.27456        Google Scholar

25. Liu, S., L. Zhu, F. Allibert, I. Radu, X. Zhu, and Y. Lu, "Physical models of planar spiral inductor integrated on the high-resistivity and trap-rich silicon-on-insulator substrates," IEEE Transactions on Electron Devices, Vol. 64, No. 7, 2775-2781, Jul. 2017.
doi:10.1109/TED.2017.2700022        Google Scholar

26. Yammouch, T., K. Okada, and K. Masu, "Physical modeling of MEMS variable inductor," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 55, No. 5, 419-422, May 2008.
doi:10.1109/TCSII.2007.914443        Google Scholar

27. Sze, S. M. and K. K. Ng, Physics of Semiconductor Devices, Wiley, 2006.
doi:10.1002/0470068329

28. Veyres, C. and V. F. Hanna, "Extension of the application of conformal mapping techniques to coplanar lines with finite dimensions," Int. J. Electron., Vol. 48, No. 1, 47-56, Jan. 1980.
doi:10.1080/00207218008901066        Google Scholar

29. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, Wiley, 2001.
doi:10.1002/0471224758

30. Gevorgian, S., L. J. P. Linner, and E. L. Kollberg, "CAD models for shielded multilayered CPW," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 4, 772-779, Apr. 1995.
doi:10.1109/22.375223        Google Scholar

31. Ghione, G. and M. Pirola, Microwave Electronics, The Cambridge RF and Microwave Engineering Series, Cambridge University Press, Cambridge, 2017.
doi:10.1017/9781316756171

32. Hansen, R. C. and W. T. Pawlewicz, "Effective conductivity and microwave reflectivity of thin metallic films," IEEE Transactions on Microwave Theory and Techniques, Vol. 30, No. 11, 2064-2066, 1982.
doi:10.1109/TMTT.1982.1131380        Google Scholar

33. Liu, Y. and J. Tan, "Frequency dependent model of sheet resistance and effect analysis on shielding effectiveness of transparent conductive mesh coatings," Progress In Electromagnetics Research, Vol. 140, 353-368, 2013.
doi:10.2528/PIER13050312        Google Scholar

34. Bahl, I. and P. Bhartia, Microwave Solid State Circuit Design, Wiley-Interscience, 2003.

35. Chu, Q. and Y. Yang, "A compact ultrawideband antenna with 3.4/5.5 GHz dual band-notched characteristics," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3637-3644, Dec. 2008.
doi:10.1109/TAP.2008.2007368        Google Scholar

36. Pele, I., A. Chousseaud, and S. Toutain, "Simultaneous modeling of impedance and radiation pattern antenna for UWB pulse modulation," Proc. IEEE AP-S Int. Symp., Vol. 2, 1871-1874, Jun. 2004.        Google Scholar