1. Schram, R., A. Williams, and M. van Ratingen, "Implementation of Autonomous Emergency Braking (AEB), the next step in euro NCAP's safety assessment," 2013 Proc. of the Int. Technical Conf. Onthe Enhanced Safety of Vehicles (ESV), Seoul, Republic of Korea, May 27-30, 2013. Google Scholar
2. Weiss, M., "Microstrip antennas for millimeter waves," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 171-174, January, 1981.
doi:10.1109/TAP.1981.1142547 Google Scholar
3. Xu, J., W. Hong, H. Zhang, G. Wang, Y. Yu, and Z. H. Jiang, "An array antenna for both long- and medium-range 77 GHz automotive radar applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7207-7216, December 2017.
doi:10.1109/TAP.2017.2761549 Google Scholar
4. Yu, Y., W. Hong, Z. H. Jiang, and H. Zhang, "E-band low-profile, wideband 45◦ linearly polarized slot-loaded patch and its array for millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4364-4369, August 2018.
doi:10.1109/TAP.2018.2840825 Google Scholar
5. Li, M. and K. Luk, "Low-cost wideband microstrip antenna array for 60-GHz applications," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3012-3018, June 2014.
doi:10.1109/TAP.2014.2311994 Google Scholar
6. Guo, Y. Q., Y. M. Pan, and S. Y. Zheng, "Design of series-fed, single-layer, and wideband millimeter-wave microstrip arrays," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 7017-7026, October 2020.
doi:10.1109/TAP.2020.3008668 Google Scholar
7. Xu, H., J. Zhou, K. Zhou, Q. Wu, Z. Yu, and W. Hong, "Planar wideband circularly polarized cavity-backed stacked patch antenna array for millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5170-5179, October 2018.
doi:10.1109/TAP.2018.2862345 Google Scholar
8. Yuan, T., N. Yuan, and L. Li, "A novel series-fed taper antenna array design," IEEE Antennas Wireless Propag. Lett., Vol. 7, 362-365, 2008.
doi:10.1109/LAWP.2008.928487 Google Scholar
9. Khalili, H., K. Mohammadpour-Aghdam, S. Alamdar, and M. Mohammad-Taheri, "Low-cost series-fed microstrip antenna arrays with extremely low sidelobe levels," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4606-4612, September 2018.
doi:10.1109/TAP.2018.2845442 Google Scholar
10. Kang, Y., E. Noh, and K. Kim, "Design of traveling-wave series-fed microstrip array with a low sidelobe level," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 8, 1395-1399, August 2020.
doi:10.1109/LAWP.2020.2989916 Google Scholar
11. Qian, J., H. Zhu, M. Tang, and J. Mao, "A 24 GHz microstrip comb array antenna with high sidelobe suppression for radar sensor," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 7, 1220-1224, July 2021.
doi:10.1109/LAWP.2021.3075887 Google Scholar
12. Diawuo, H. A. and Y.-B. Jung, "Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 7, 1286-1290, July 2018.
doi:10.1109/LAWP.2018.2842242 Google Scholar
13. Dzagbletey, P. A. and Y.-B. Jung, "Stacked microstrip linear array for millimeter-wave 5G baseband communication," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 5, 780-783, May 2018.
doi:10.1109/LAWP.2018.2816258 Google Scholar
14. Lee, J.-H., J. M. Lee, K. C. Hwang, D.-W. Seo, D. Shin, and C. Lee, "Capacitively coupled microstrip comb-line array antennas for millimeter-wave applications," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 8, 1336-1339, August 2020.
doi:10.1109/LAWP.2020.3001945 Google Scholar
15. Liu, D., H. Nakano, X. Qing, and T. Zwick, Handbook of Antenna Technologies, 1389-1413, Springer, Gateway East, Singapore, 2016.
16. Seo, K., "Planar microstrip-to-waveguide transition in millimeter-wave band," Advancement in Microstrip Antennas with Recent Applications, Ch. 11, 249-277, A. Kishk, Ed., InTech, Rijeka, Croatia, 2013. Google Scholar