1. ETSI, , Broadband radio access networks (BRAN); HIPERLAN type 2 technical specifications; physical layer (PHY), Tech. Rep. DTS/BRAN-0023003, European Telecommunications Standards Institute, Sophia Antipolis, France, Oct. 1999.
2. O'Hara, B. and A. Petrick, The IEEE 802.11 Handbook: A Designer's Companion, IEEE Press, 1999.
3. Diels, W., K. Vaesen, P. Wambacq, et al. "Single-package integration of RF blocks for a 5 GHz WLAN application," IEEE Transactions on Advanced Packaging, Vol. 24, No. 3, 384-391, 2001.
doi:10.1109/6040.938307 Google Scholar
4. IEEE 802.11, , Wireless access method and physical layer specifications, New York, NY, USA, Sep. 1994.
5. Wong, K.-L., Compact and Broadband Microstrip Antennas, John Wiley & Sons, 2002.
doi:10.1002/0471221112
6. Huynh, T. and K.-F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 31, No. 16, 1310-1312, 1995.
doi:10.1049/el:19950950 Google Scholar
7. Wong, K.-L. and W.-H. Hsu, "Broadband triangular microstrip antenna with U-shaped slot," Electronics Letters, Vol. 33, No. 25, 2085-2087, 1997.
doi:10.1049/el:19971472 Google Scholar
8. Guo, Y. X., K. M. Luk, and K. F. Lee, "L-probe proximity-fed short-circuited patch antennas," Electronics Letters, Vol. 35, No. 24, 2069-2070, 1999.
doi:10.1049/el:19991446 Google Scholar
9. Tong, K. F., K. M. Luk, K. F. Lee, and R. Q. Lee, "A broad-band U-slot rectangular patch antenna on a microwave substrate," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 6, 954-960, 2000.
doi:10.1109/8.865229 Google Scholar
10. Guo, Y.-X., K.-M. Luk, K.-F. Lee, and R. Chair, "A quarter-wave U-shaped patch antenna with two unequal arms for wideband and dual-frequency operation," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 8, 1082-1087, 2002.
doi:10.1109/TAP.2002.801285 Google Scholar
11. Yen, M.-H., P. Hsu, and J.-F. Kiang, "Analysis of a CPW-fed slot ring antenna," Proc. APMC 2001 Int. Conf., 1267-1270, 2001. Google Scholar
12. Tehrani, H. and K. Chang, "Multifrequency operation of microstrip-fed slot-ring antennas on thin low-dielectric permittivity substrates," IEEE Trans. Antennas Propag., Vol. 50, No. 9, 1299-1308, Sep. 2002.
doi:10.1109/TAP.2002.800697 Google Scholar
13. Chen, J.-S., "Studies of CPW-fed equilateral triangular-ring slot antennas and triangular-ring slot coupled patch antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 7, 2208-2211, Jul. 2005.
doi:10.1109/TAP.2005.850738 Google Scholar
14. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propag., Vol. 4, No. 4, 666-671, Oct. 1956.
doi:10.1109/TAP.1956.1144455 Google Scholar
15. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," Proc. Inst. Elect. Eng. Microw. Antennas Propag., Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828 Google Scholar
16. Foroozesh, N. A. and L. Shafai, "Investigation into the effects of the patch-type fss superstrate on the high-gain cavity resonance antenna design," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 258-270, Feb. 2010.
doi:10.1109/TAP.2009.2037702 Google Scholar
17. Alexopoulos, N. and D. Jackson, "Fundamental superstrate (cover) effect on printed circuit antennas," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 807-816, Aug. 1984.
doi:10.1109/TAP.1984.1143433 Google Scholar
18. Lee, R. Q. and K. F. Lee, "Experimental study of the two-layer electromagnetically coupled rectangular patch antenna," IEEE Trans. Antennas Propag., Vol. 38, No. 8, 1298-1302, Aug. 1990.
doi:10.1109/8.56971 Google Scholar
19. Egashira, S. and E. Nishiyama, "Stacked microstrip antenna with wide bandwidth and high gain," IEEE Trans. Antennas Propag., Vol. 44, No. 11, 1533-1534, Nov. 1996.
doi:10.1109/8.542079 Google Scholar
20. Foroozesh, A. and L. Shafai, "2-D truncated periodic leaky-wave antennas with reactive impedance surface ground," Proc. IEEE AP-S Int. Symp., 15-18, Albuquerque, NM, Jul. 9-14, 2006. Google Scholar
21. Yu, C.-C. and X.-C. Lin, "A wideband single chip inductor-loaded CPW-fed inductive slot antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1498-1501, May 2008.
doi:10.1109/TAP.2008.919224 Google Scholar
22. Sun, X., G. Zeng, H.-C. Yang, and Y. Li, "A compact quadband CPW-fed slot antenna for M-WiMAX/WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 395-398, Apr. 2012.
doi:10.1109/LAWP.2012.2192901 Google Scholar
23. Wang, J., H. Wong, Z. Ji, and Y. Wu, "Broadband CPW-fed aperture coupled metasurface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 517-520, Mar. 2019.
doi:10.1109/LAWP.2019.2895618 Google Scholar
24. Liao, H.-P. and S.-Y. Chen, "Bandwidth and gain enhancement of CPW-fed slot antenna using a partially re ective surface formed by two-step tapered dipole unit cells," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019. Google Scholar
25. Zhou, E., Y. Cheng, F. Chen, H. Luo, and X. Li, "Low-profile high-gain wideband multi-resonance microstrip-fed slot antenna with anisotropic metasurface," Progress In Electromagnetics Research, Vol. 175, 91-104, 2022.
doi:10.2528/PIER22062201 Google Scholar
26. Kumar, A., A. De, and R. K. Jain, "Gain enhancement using modified circular loop FSS loaded with slot antenna for sub-6 GHz 5G application," Progress In Electromagnetics Research Letters, Vol. 98, 41-48, 2021.
doi:10.2528/PIERL21031108 Google Scholar
27. Paik, H., S. K. Mishra, C. M. Sai Kumar, and K. Premchand, "High performance CPW fed printed antenna with double layered frequency selective surface reflector for bandwidth and gain improvement," Progress In Electromagnetics Research Letters, Vol. 102, 47-55, 2022.
doi:10.2528/PIERL21101703 Google Scholar
28. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," International Journal of RF and Microwave Computer-Aided Engineering, e22505, Nov. 2020. Google Scholar
29. Cheng, Y.-F., X. Ding, X. Xu, X. Zhong, and C. Liao, "Design and analysis of a bow-tie slot-coupled wideband metasurface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1342-1346, Jul. 2019.
doi:10.1109/LAWP.2019.2916380 Google Scholar
30. Kanjanasit, K. and C. Wang, "A wideband resonant cavity antenna assembled using a micromachined CPW-fed patch source and a two-layer metamaterial superstrate," IEEE Trans. on Components, Packaging and Manufacturing Tech., Vol. 9, No. 6, 1142-1150, Jun. 2019.
doi:10.1109/TCPMT.2018.2870479 Google Scholar
31. Chaimool, S., C. Rakluea, and P. Akkaraekthalin, "Mu-near-zero metasurface for microstrip-fed slot antennas," Appl. Phys., Vol. 112, 669-675, Apr. 2013.
doi:10.1007/s00339-013-7703-6 Google Scholar