Vol. 107
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-11-22
Gain and Bandwidth Enhancement of a CPW-Fed Bidirectional Dumbbell Shaped Slot Antenna Using PRS
By
Progress In Electromagnetics Research Letters, Vol. 107, 159-167, 2022
Abstract
A bidirectional, coplanar waveguide (CPW) fed dumbbell-shaped slot antenna with partially reflecting surface (PRS) with parasitic patches for gain, bandwidth, and radiation pattern improvement is investigated. A dumbbell-shaped CPW-fed slot antenna has a dimension of 0.71λg x 0.71λg x 0.0571λg. The proposed antenna is simple in design and has low profile structure. To achieve improvement in bandwidth, gain, and bidirectional radiation pattern, PRS with parasitic patches are placed on top and bottom of antenna at a distance of 0.25λg. The proposed design yields wide bandwidth of 4.11 GHz (4.48-8.59 GHz) with percentage bandwidth of 62.89%, S11 ≤ -10 dB, and peak gain of 5.61 dBi. The variation in the gain over desired bandwidth is less than 3 dB. The antenna is fabricated using an FR4 substrate with relative permittivity of 4.4. The measured results corroborate the design and stipulate the proposed structure to be suitable for applications in C Band.
Citation
Ameet M. Mehta, Shankar B. Deosarkar, and Anil Bapusa Nandgaonkar, "Gain and Bandwidth Enhancement of a CPW-Fed Bidirectional Dumbbell Shaped Slot Antenna Using PRS," Progress In Electromagnetics Research Letters, Vol. 107, 159-167, 2022.
doi:10.2528/PIERL22091504
References

1. ETSI, , Broadband radio access networks (BRAN); HIPERLAN type 2 technical specifications; physical layer (PHY), Tech. Rep. DTS/BRAN-0023003, European Telecommunications Standards Institute, Sophia Antipolis, France, Oct. 1999.

2. O'Hara, B. and A. Petrick, The IEEE 802.11 Handbook: A Designer's Companion, IEEE Press, New York, NY, USA, 1999.

3. Diels, W., K. Vaesen, P. Wambacq, et al. "Single-package integration of RF blocks for a 5 GHz WLAN application," IEEE Transactions on Advanced Packaging, Vol. 24, No. 3, 384-391, 2001.
doi:10.1109/6040.938307

4. IEEE 802.11, , Wireless access method and physical layer specifications, New York, NY, USA, Sep. 1994.

5. Wong, K.-L., Compact and Broadband Microstrip Antennas, John Wiley & Sons, New York, NY, USA, 2002.
doi:10.1002/0471221112

6. Huynh, T. and K.-F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 31, No. 16, 1310-1312, 1995.
doi:10.1049/el:19950950

7. Wong, K.-L. and W.-H. Hsu, "Broadband triangular microstrip antenna with U-shaped slot," Electronics Letters, Vol. 33, No. 25, 2085-2087, 1997.
doi:10.1049/el:19971472

8. Guo, Y. X., K. M. Luk, and K. F. Lee, "L-probe proximity-fed short-circuited patch antennas," Electronics Letters, Vol. 35, No. 24, 2069-2070, 1999.
doi:10.1049/el:19991446

9. Tong, K. F., K. M. Luk, K. F. Lee, and R. Q. Lee, "A broad-band U-slot rectangular patch antenna on a microwave substrate," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 6, 954-960, 2000.
doi:10.1109/8.865229

10. Guo, Y.-X., K.-M. Luk, K.-F. Lee, and R. Chair, "A quarter-wave U-shaped patch antenna with two unequal arms for wideband and dual-frequency operation," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 8, 1082-1087, 2002.
doi:10.1109/TAP.2002.801285

11. Yen, M.-H., P. Hsu, and J.-F. Kiang, "Analysis of a CPW-fed slot ring antenna," Proc. APMC 2001 Int. Conf., 1267-1270, 2001.

12. Tehrani, H. and K. Chang, "Multifrequency operation of microstrip-fed slot-ring antennas on thin low-dielectric permittivity substrates," IEEE Trans. Antennas Propag., Vol. 50, No. 9, 1299-1308, Sep. 2002.
doi:10.1109/TAP.2002.800697

13. Chen, J.-S., "Studies of CPW-fed equilateral triangular-ring slot antennas and triangular-ring slot coupled patch antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 7, 2208-2211, Jul. 2005.
doi:10.1109/TAP.2005.850738

14. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propag., Vol. 4, No. 4, 666-671, Oct. 1956.
doi:10.1109/TAP.1956.1144455

15. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," Proc. Inst. Elect. Eng. Microw. Antennas Propag., Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828

16. Foroozesh, N. A. and L. Shafai, "Investigation into the effects of the patch-type fss superstrate on the high-gain cavity resonance antenna design," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 258-270, Feb. 2010.
doi:10.1109/TAP.2009.2037702

17. Alexopoulos, N. and D. Jackson, "Fundamental superstrate (cover) effect on printed circuit antennas," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 807-816, Aug. 1984.
doi:10.1109/TAP.1984.1143433

18. Lee, R. Q. and K. F. Lee, "Experimental study of the two-layer electromagnetically coupled rectangular patch antenna," IEEE Trans. Antennas Propag., Vol. 38, No. 8, 1298-1302, Aug. 1990.
doi:10.1109/8.56971

19. Egashira, S. and E. Nishiyama, "Stacked microstrip antenna with wide bandwidth and high gain," IEEE Trans. Antennas Propag., Vol. 44, No. 11, 1533-1534, Nov. 1996.
doi:10.1109/8.542079

20. Foroozesh, A. and L. Shafai, "2-D truncated periodic leaky-wave antennas with reactive impedance surface ground," Proc. IEEE AP-S Int. Symp., 15-18, Albuquerque, NM, Jul. 9-14, 2006.

21. Yu, C.-C. and X.-C. Lin, "A wideband single chip inductor-loaded CPW-fed inductive slot antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1498-1501, May 2008.
doi:10.1109/TAP.2008.919224

22. Sun, X., G. Zeng, H.-C. Yang, and Y. Li, "A compact quadband CPW-fed slot antenna for M-WiMAX/WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 395-398, Apr. 2012.
doi:10.1109/LAWP.2012.2192901

23. Wang, J., H. Wong, Z. Ji, and Y. Wu, "Broadband CPW-fed aperture coupled metasurface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 517-520, Mar. 2019.
doi:10.1109/LAWP.2019.2895618

24. Liao, H.-P. and S.-Y. Chen, "Bandwidth and gain enhancement of CPW-fed slot antenna using a partially re ective surface formed by two-step tapered dipole unit cells," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019.

25. Zhou, E., Y. Cheng, F. Chen, H. Luo, and X. Li, "Low-profile high-gain wideband multi-resonance microstrip-fed slot antenna with anisotropic metasurface," Progress In Electromagnetics Research, Vol. 175, 91-104, 2022.
doi:10.2528/PIER22062201

26. Kumar, A., A. De, and R. K. Jain, "Gain enhancement using modified circular loop FSS loaded with slot antenna for sub-6 GHz 5G application," Progress In Electromagnetics Research Letters, Vol. 98, 41-48, 2021.
doi:10.2528/PIERL21031108

27. Paik, H., S. K. Mishra, C. M. Sai Kumar, and K. Premchand, "High performance CPW fed printed antenna with double layered frequency selective surface reflector for bandwidth and gain improvement," Progress In Electromagnetics Research Letters, Vol. 102, 47-55, 2022.
doi:10.2528/PIERL21101703

28. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," International Journal of RF and Microwave Computer-Aided Engineering, e22505, Nov. 2020.

29. Cheng, Y.-F., X. Ding, X. Xu, X. Zhong, and C. Liao, "Design and analysis of a bow-tie slot-coupled wideband metasurface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1342-1346, Jul. 2019.
doi:10.1109/LAWP.2019.2916380

30. Kanjanasit, K. and C. Wang, "A wideband resonant cavity antenna assembled using a micromachined CPW-fed patch source and a two-layer metamaterial superstrate," IEEE Trans. on Components, Packaging and Manufacturing Tech., Vol. 9, No. 6, 1142-1150, Jun. 2019.
doi:10.1109/TCPMT.2018.2870479

31. Chaimool, S., C. Rakluea, and P. Akkaraekthalin, "Mu-near-zero metasurface for microstrip-fed slot antennas," Appl. Phys., Vol. 112, 669-675, Apr. 2013.
doi:10.1007/s00339-013-7703-6