Vol. 107
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-10-27
Ultra-Wide Band Antenna on Flexible Substrate for Future Wireless Communications
By
Progress In Electromagnetics Research Letters, Vol. 107, 83-91, 2022
Abstract
In this paper, a novel ultra-wide band (UWB) antenna with a planar single-layer structure is proposed. The antenna consists of a main circular patch that is capacitively coupled to six circular patches of very small size relative to the main patch. The coupling is achieved through narrow gaps of semicircular shape which are uniformly distributed on the circumference of the main patch. A coplanar waveguide (CPW) is used for feeding the antenna to get the complete antenna structure with the feeding line printed on one face of a flexible dielectric substrate. The antenna is fabricated and subjected to experimental assessment of its performance regarding the bandwidth, gain, and radiation efficiency. The measurements show good agreement with the simulation results. It is shown that the proposed antenna operates efficiently over the frequency band of 3.1-10.6 GHz. The antenna has a radiation efficiency that ranges from 99% to 100% over the entire band. This high efficiency is attributed to the planar single-layer structure of the antenna and the use of a thin low-loss substrate. The antenna maximum gain ranges from 2 dBi to 5 dBi over the entire frequency band. The substrate material is Rogers RO3003TM which is flexible and can be conformal to planar and curved surfaces. The total substrate dimensions are 35 × 39.4 × 0.5 mm.
Citation
Rania R. Elsharkawy, Khalid Fawzy Ahmed Hussein, and Asmaa Elsayed Farahat, "Ultra-Wide Band Antenna on Flexible Substrate for Future Wireless Communications," Progress In Electromagnetics Research Letters, Vol. 107, 83-91, 2022.
doi:10.2528/PIERL22091902
References

1. First Report and Order, Part 15, , Federal Communications Commission (FCC), Washington, DC, USA, 2002.
doi:10.1016/j.aej.2021.09.055

2. Saleh, S., W. Ismail, I. S. Z. Abidin, M. H. Jamaluddin, M. H. Bataineh, and A. S. Alzoubi, "Compact UWB Vivaldi tapered slot antenna," Alexandria Engineering Journal, Vol. 61, 4977-4994, 2022.
doi:10.1109/ACCESS.2021.3134865

3. Elsharkawy, R. R., A. S. Abd El-Hameed, and S. M. El-Nady, "Quad-port MIMO filtenna with high isolation employing BPF with high out-of-band rejection," IEEE Access, Vol. 10, 3814-3824, 2022.
doi:10.1016/j.aeue.2020.153092

4. Dwivedi, R. P., M. Z. Khan, and U. K. Kommuri, "UWB circular cross slot AMC design for radiation improvement of UWB antenna," International Journal of Electronics and Communications (AEÜ), Vol. 117, 1-8, 2020.
doi:10.1016/j.matpr.2021.02.163

5. Gayatri, T., G. Srinivasu, D. M. K. Chaitanya, and V. K. Sharma, "A compact Luna shaped high gain UWB antenna in 3.1 GHz to 10.6 GHz using FR4 material substrate," Materials Today: Proceedings, Vol. 49, 359-365, 2022.
doi:10.2528/PIER07012101

6. Hussein, K. F. A., "Effect of internal resonance on the radar cross section and shield effectiveness of open spherical enclosures," Progress In Electromagnetics Research, Vol. 70, 225-246, 2007.
doi:10.1109/ACCESS.2022.3192548

7. Farahat, A. E., K. F. A. Hussein, and M. A. El-Hassan, "Design methodology of multiband printed antennas for future generations of mobile handsets," IEEE Access, Vol. 10, 75918-75931, 2022.
doi:10.1109/ACCESS.2022.3160724

8. Farahat, A. E. and K. F. A. Hussein, "Dual-band (28/38 GHz) wideband MIMO antenna for 5G mobile applications," IEEE Access, Vol. 10, 32213-32223, 2022.