1. Veselago, V. G., "Electrodynamics of substances with simultaneously negative ε and µ," Usp. Fiz. Nauk, Vol. 92, No. 7, 517-526, 1967.
doi:10.3367/UFNr.0092.196707d.0517 Google Scholar
2. Feng, Y. J., B. Zhu, P. H. Xu, et al. "Application of electromagnetic metamaterial in microwave absorbing materials," Progress of Materials in China, Vol. 32, No. 8, 473-479, 2013. Google Scholar
3. Zhang, L., S. Liu, and T. J. Cui, "Theory and applications of electromagnetically encoded metamaterials," China Optical, Vol. 10, No. 1, 1-12, 2017.
doi:10.3788/co.20171001.0001b Google Scholar
4. Wang, G. D., "Design of electromagnetic metamaterial and study of its absorbing properties," Huazhong University of Science and Technology, 2014. Google Scholar
5. Jain, P., A. K. Singh, J. K. Pandey, et al. "Ultra-thin metamaterial perfect absorbers for single- /dual-/multi-band microwave applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 5, 390-396, 2020.
doi:10.1049/iet-map.2019.0623 Google Scholar
6. Jain, P., A. K. Singh, J. K. Pandey, et al. "An ultrathin compact polarization-sensitive triple-band microwave metamaterial absorber," Journal of Electronic Materials, Vol. 50, No. 3, 1506-1513, 2021.
doi:10.1007/s11664-020-08680-z Google Scholar
7. Jain, P., K. Prakash, G. M. Khanal, et al. "Quad-band polarization sensitive terahertz metamaterial absorber using Gemini-shaped structure," Results in Optics, Vol. 8, 100254, 2022.
doi:10.1016/j.rio.2022.100254 Google Scholar
8. Zhou, J., E. N. Economon, T. Koschny, et al. "Unifying approach to left-handed material design," Optics Letters, Vol. 31, No. 24, 3620-3622, 2006.
doi:10.1364/OL.31.003620 Google Scholar
9. Bui, S. T., Y. J. Yoo, K. W. Kim, et al. "Small-size metamaterial perfect absorber operating at low frequency," Advances in Natural Sciences: Nanoscience and Nanotechnology, Vol. 5, No. 4, 045008, 2014.
doi:10.1088/2043-6262/5/4/045008 Google Scholar
10. Khuyen, B. X., B. S. Tung, Y. J. Yoo, et al. "Miniaturization for ultrathin metamaterial perfect absorber in the VHF band," Scientic Reports, Vol. 7, No. 1, 1-7, 2017.
doi:10.1038/s41598-016-0028-x Google Scholar
11. Zuo, W., Y. Yang, X. He, et al. "A miniaturized metamaterial absorber for ultrahigh-frequency RFID system," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 329-332, 2016. Google Scholar
12. Li, H., L. H. Yuan, B. Zhou, et al. "Ultrathin multiband gigahertz metamaterial absorbers," Journal of Applied Physics, Vol. 110, No. 1, 014909, 2011.
doi:10.1063/1.3608246 Google Scholar
13. Yoo, Y. J., H. Y. Zheng, Y. J. Kim, et al. "Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell," Applied Physics Letters, Vol. 105, No. 4, 041902, 2014.
doi:10.1063/1.4885095 Google Scholar
14. Ghosh, S., S. Bhattacharyya, Y. Kaiprath, et al. "Triple-band polarization-independent metamaterial absorber using destructive interference," 2015 European Microwave Conference (EuMC), 335-338, IEEE, 2015.
doi:10.1109/EuMC.2015.7345768 Google Scholar
15. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "An ultra-thin polarization independent metamaterial absorber for triple band applications," 2013 IEEE Applied Electromagnetics Conference (AEMC), 1-2, IEEE, 2013. Google Scholar
16. Shen, X., T. J. Cui, J. Zhao, et al. "Polarization-independent wide-angle triple-band metamaterial absorber," Optics Express, Vol. 19, No. 10, 9401-9407, 2011.
doi:10.1364/OE.19.009401 Google Scholar
17. Hu, D., J. Cao, W. Li, et al. "Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators," Advanced Optical Materials, Vol. 5, No. 13, 1700109, 2017.
doi:10.1002/adom.201700109 Google Scholar
18. Amiri, M., F. Togh, N. Shariati, et al. "Miniature tri-wideband Sierpinski-Minkowski fractals metamaterial perfect absorber," IET Microwaves, Antennas & Propagation, Vol. 13, No. 7, 991-996, 2019.
doi:10.1049/iet-map.2018.5837 Google Scholar
19. Huang, D., F. Kang, C. Dong, et al. "A second-order cross fractal meta-material structure used in low-frequency microwave absorbing materials," Applied Physics A, Vol. 115, No. 2, 627-635, 2014.
doi:10.1007/s00339-014-8374-7 Google Scholar
20. Nie, Y., Y. Z. Cheng, and R. Z. Gong, "A low-frequency wideband metamaterial absorber based on a cave-disk resonator and resistive film," Chinese Physics B, Vol. 22, No. 4, 044102, 2013.
doi:10.1088/1674-1056/22/4/044102 Google Scholar
21. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Dual-and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 3, 878-886, 2018.
doi:10.1109/TEMC.2018.2839881 Google Scholar
22. Wang, Y., L. Wang, J. Song, et al. "Experimental analysis and comparison between cross-shaped metamaterial absorber and its complementary structure," Microwave and Optical Technology Letters, Vol. 61, No. 4, 930-936, 2019.
doi:10.1002/mop.31666 Google Scholar
23. Yuan, W. and Y. Cheng, "Low-frequency and broadband metamaterial absorber based on lumped elements: Design, characterization and experiment," Applied Physics A, Vol. 117, No. 4, 1915-1921, 2014.
doi:10.1007/s00339-014-8637-3 Google Scholar